现代计算机的起源神话的一部分是关于20世纪60-70年代的黄金时代的故事。在这个故事中,有远见的先驱者们追求着一个梦想,在这个梦想中,计算机能够提供强大的思维工具,即增强人类智慧的工具。其中一位先驱者艾伦-凯(Alan Kay)在写到个人电脑的潜力时,总结了这个梦想的乐观主义。"它的使用实际上将改变整个文明的思维模式"。
It’s an inspiring dream, which helped lead to modern interactive graphics, windowing interfaces, word processors, and much else. But retrospectively it’s difficult not to be disappointed, to feel that computers have not yet been nearly as transformative as far older tools for thought, such as language and writing. Today, it’s common in technology circles to pay lip service to the pioneering dreams of the past. But nostalgia aside there is little determined effort to pursue the vision of transformative new tools for thought.
这是一个令人振奋的梦想,它帮助促成了现代交互式图形、窗口化界面、文字处理机等现代交互式图形、窗口化界面、文字处理机等。但回想起来,我们很难不感到失望,觉得计算机还没有像语言和文字等更古老的思想工具那样,远不如语言和文字等更古老的思想工具的变革性。今天,在科技圈里,人们普遍对过去的先锋梦想赞不绝口。但是,除了怀旧之外,人们很少有决心去追求变革性的新思维工具的愿景。
We believe now is a good time to work hard on this vision again. In this essay we sketch out a set of ideas we believe can be used to help develop transformative new tools for thought. In the first part of the essay we describe an experimental prototype system that we’ve built, a kind of mnemonic medium intended to augment human memory. This is a snapshot of an ongoing project, detailing both encouraging progress as well as many challenges and opportunities. In the second part of the essay, we broaden the focus. We sketch several other prototype systems. And we address the question: why is it that the technology industry has made comparatively little effort developing this vision of transformative tools for thought?
我们相信,现在是再次努力实现这一愿景的好时机。在这篇文章中,我们勾勒出一套我们认为可以用来帮助开发变革性的新思维工具的想法。在文章的第一部分中,我们描述了一个实验性的原型系统,这是一个实验性的原型系统,它是一种*记忆介质,旨在增强人类的记忆力。这是一个正在进行的项目的一个缩影,详细介绍了令人鼓舞的进展以及许多挑战和机遇。在文章的第二部分,我们将扩大重点。我们勾画了其他几个原型系统。我们还探讨了一个问题:为什么技术行业在开发这种变革性的思想工具的愿景方面所做的努力相对较少?
In the opening we mentioned some visionaries of the past. To those could be added many others – Ivan Sutherland, Seymour Papert, Vannevar Bush, and more. Online there is much well-deserved veneration for these people. But such veneration can veer into an unhealthy reverence for the good old days, a belief that giants once roamed the earth, and today’s work is lesser. Yes, those pioneers did amazing things, and arguably had ways of working that modern technologists, in both industry and academia, are poorly equipped to carry on. But they also made mistakes, and were ignorant of powerful ideas that are available today. And so a theme through both parts of the essay is to identify powerful ideas that weren’t formerly known or weren’t acted upon. Out of this understanding arises a conviction that a remarkable set of opportunities is open today.
在开篇我们提到了过去的一些远见卓识。除了这些人之外,还有许多其他的人—— 伊万-萨瑟兰、西摩-帕伯特、范内瓦尔-布什等。在网上,人们对这些人有很多当之无愧的崇拜。但这种敬仰可能会让人对过去的美好时光产生不健康的敬畏,认为巨人曾经在地球上漫游,而今天的工作是次要的。是的,那些先驱者们做了令人惊奇的事情,可以说他们的工作方式是现代科技工作者,无论是工业界还是学术界,都不具备继续发展的条件。但他们也犯过错误,对今天的强大思想一无所知。因此,贯穿这两部分文章的一个主题就是找出以前不为人知或不为人知的强大思想。从这一认识中产生了一个信念,即今天有一系列非凡的机会。
A word on nomenclature: the term “tools for thought” rolls off neither the tongue nor the keyboard. What’s more, the term “tool” implies a certain narrowness. Alan Kay has argued that a more powerful aim is to develop a new medium for thought. A medium such as, say, Adobe Illustrator is essentially different from any of the individual tools Illustrator contains. Such a medium creates a powerful immersive context, a context in which the user can have new kinds of thought, thoughts that were formerly impossible for them. Speaking loosely, the range of expressive thoughts possible in such a medium is an emergent property of the elementary objects and actions in that medium. If those are well chosen, the medium expands the possible range of human thought.
关于名词术语:"思想工具 "这个词既不在口头上,也不在键盘上。更重要的是,"工具 "一词意味着某种狭义。Alan Kay认为,更有力的目的是开发一种新的思想媒介。像Adobe Illustrator这样的媒介,本质上不同于Illustrator中的任何一个单独的工具。这样的媒介可以创造出一种强大的沉浸式语境,在这种语境中,用户可以有新的思想,即以前不可能有的思想。粗略地讲,在这样的媒介中,可以表现的思想的范围是该媒介中的基本对象和动作的一种新特性。如果这些东西选得好,这个媒介就会扩大人类思想的可能范围。
With that said, the term “tools for thought” has been widely used since Iverson’s 1950s and 1960s work An account may be found in Iverson’s Turing Award lecture, Notation as a Tool of Thought (1979). Incidentally, even Iverson is really describing a medium for thought, the APL programming language, not a narrow tool. introducing the term. And so we shall use “tools for thought” as our catch all phrase, while giving ourselves license to explore a broader range, and also occasionally preferring the term “medium” when it is apt.
说到这里,"思想的工具 "这个术语自艾弗森在20世纪50年代和60年代的作品《Notation as a Tool of Thought》(1979)中的叙述可以找到。顺便说一下,即使是艾弗森也是在描述一种思想的媒介--APL编程语言,而不是狭义的工具。 在介绍这个术语时,我们应该使用 "思想的工具"。因此,我们将使用 "思想的工具 "作为我们所有的短语,同时允许自己探索更广泛的范围,当 "媒介 "这个词很贴切的时候,我们偶尔也会喜欢用 "媒介 "这个词。
Let’s come back to that phrase from the opening, about changing “the thought patterns of an entire civilization”. It sounds ludicrous, a kind of tech soothsaying. Except, of course, such changes have happened multiple times during human history: the development of language, of writing, and our other most powerful tools for thought. And, for better and worse, computers really have affected the thought patterns of our civilization over the past 60 years, and those changes seem like just the beginning. This essay is a small contribution to understanding how such changes happen, and what is still possible.
让我们再回到开篇的那句话,关于改变 "整个文明的思维模式"。这句话听起来很可笑,是一种技术上的 "神仙说"。当然,这种变化在人类历史上已经发生过多次:语言的发展,文字的发展,以及我们其他最强大的思想工具。而且,不管是好的还是坏的,在过去的60年里,计算机确实影响了我们人类文明的思维模式,而这些变化似乎只是一个开始。这篇文章是对理解这种变化是如何发生的,以及仍有可能发生的事情的一个小小的贡献。
The musician and comedian Martin Mull has observed that “writing about music is like dancing about architecture”. In a similar way, there’s an inherent inadequacy in writing about tools for thought. To the extent that such a tool succeeds, it expands your thinking beyond what can be achieved using existing tools, including writing. The more transformative the tool, the larger the gap that is opened. Conversely, the larger the gap, the more difficult the new tool is to evoke in writing. But what writing can do, and the reason we wrote this essay, is act as a bootstrap. It’s a way of identifying points of leverage that may help develop new tools for thought. So let’s get on with it.
音乐家、喜剧演员马丁-穆尔曾观察到,"写音乐就像写建筑的舞蹈"。同样的,写思维的工具也有其内在的不足。在这种工具成功的程度上,它拓展了你的思维,超越了包括写作在内的现有工具所能达到的效果。工具的转化性越大,打开的缺口就越大。反之,差距越大,新工具就越难在写作中唤起。但写作能做的,也是我们写这篇文章的原因,就是充当一个引导者的角色。它是一种找准借力点,可以或许帮助开发新的思惟工具。所以,让我们继续下去吧。
Introducing the mnemonic medium | 记忆媒介的介绍
Few subjects are more widely regarded as difficult than quantum computing and quantum mechanics. Indeed, popular media accounts often regale (and intimidate) readers with quotes from famous physicists in the vein of: “anyone who thinks they’ve understood quantum mechanics has not understood quantum mechanics”.
What makes these subjects difficult? In fact, individually many of the underlying ideas are not too complicated for people with a technical background. But the ideas come in an overwhelming number, a tsunami of unfamiliar concepts and notation. People must learn in rapid succession of qubits, the bra-ket notation, Hadamard gates, controlled-not gates, and many, many other abstract, unfamiliar notions. They’re imbibing an entire new language. Even if they can follow at first, understanding later ideas requires fluency with all the earlier ideas. It’s overwhelming and eventually disheartening.
As an experiment, we have developed a website, Quantum Country, which explores a new approach to explaining quantum computing and quantum mechanics. Ostensibly, Quantum Country appears to be a conventional essay introduction to these subjects. There is text, explanations, and equations, much as in any other technical essay. Here’s an excerpt:
作为一个实验,我们开发了一个网站—— 量子之国,探索一种新的解释量子计算和量子力学的方法。表面上看,量子之国似乎是一个传统的介绍这些主题的文章。有文字,有解释,有方程,和其他技术文章一样。以下是摘录的内容。

But it’s not a conventional essay. Rather, Quantum Country is a prototype for a new type of mnemonic medium. Aspirationally, the mnemonic medium makes it almost effortless for users to remember what they read. That may sound like an impossible aspiration. What makes it plausible is that cognitive scientists know a considerable amount about how human beings store long-term memories. Indeed, what they know can almost be distilled to an actionable recipe: follow these steps, and you can remember whatever you choose.
但它不是传统意义上的散文,而是《量子国》。相反,「量子之国」是一种新型的记忆型媒介的原型。从愿景上说,这种记忆型媒介让用户几乎不费吹灰之力就能记住他们所读的内容。这听起来可能是一个不可能实现的愿望。让人觉得有道理的是,认知科学家对人类如何存储长期记忆有相当大的了解。事实上,他们所知道的东西几乎可以提炼成一个可操作的配方:按照这些步骤,你可以记住任何你选择的东西。
Unfortunately, those steps are poorly supported by existing media. Is it possible to design a new medium which much more actively supports memorization? That is, the medium would build in (and, ideally, make almost effortless) the key steps involved in memory. If we could do this, then instead of memory being a haphazard event, subject to chance, the mnemonic medium would make memory into a choice. Of course, on its own this wouldn’t make it trivial to learn subjects such as quantum mechanics and quantum computing – learning those subjects is about much more than memory. But it would help in addressing one core difficulty: the overwhelming number of new concepts and notation.
遗憾的是,现有媒体对这些步骤的支持度很差。是否有可能设计一种新的媒介,更积极地支持记忆?也就是说,这种媒介将建立在记忆中所涉及的关键步骤中(理想情况下,几乎不费吹灰之力)。如果我们能做到这一点,那么记忆就不会是一个偶然的事件,而不是一个偶然的事件,记忆媒介将使记忆成为一种选择。当然,就其本身而言,这并不会使学习量子力学和量子计算等学科变得微不足道--学习这些学科的意义远不止于记忆。但它将有助于解决一个核心困难:大量的新概念和记号。
In fact, there are many ways of redesigning the essay medium to do that. Before showing you our prototype, please pause for a moment and consider the following questions: how could you build a medium to better support a person’s memory of what they read? What interactions could easily and enjoyably help people consolidate memories? And, more broadly: is it possible to 2x what people remember? 10x? And would that make any long-term difference to their effectiveness?
事实上,重新设计作文媒介有很多方法可以做到这一点。在向大家展示我们的原型之前,请停顿一下,思考以下问题:如何建立一个媒介,更好地支持人们对所读内容的记忆?哪些互动可以轻松愉快地帮助人们巩固记忆?还有,更广义的是:是否有可能让人们的记忆翻2倍?10x? 那会对他们的有效性产生长期的影响吗?
Let’s sketch the user experience of Quantum Country. At the time of this writing the site contains three mnemonic essays (i.e., particular instances of the mnemonic medium). We’ll focus on the introductory essay, “Quantum Computing for the Very Curious”. Embedded within the text of the essay are 112 questions about that text. Users are asked to create an account, and quizzed as they read on whether they remember the answers to those questions. Here’s what the interaction looks like, as a user answers three questions.
让我们来勾画一下量子之国的用户体验。在写这篇文章的时候,该网站包含了三篇量子文章(即量子介质的特殊体例)。我们将重点介绍《非常好奇的量子计算》这篇介绍性文章。在这篇论文的文本中嵌入了112个关于这篇论文的问题。用户被要求创建一个账户,并在阅读的过程中测试他们是否记得这些问题的答案。以下是用户回答三个问题时的互动过程。
Note that this interaction occurs within the text of the essay itself. Here’s a zoomed-out view, so you can see how such questions are surrounded by essay text both above and below:
注意,这种互动是发生在作文文本本身的内部。这里是一个放大的视图,你可以看到这样的问题是如何被作文文本的上方和下方包围的。

We use the term cards for these interface elements pairing questions and answers.
Of course, for long-term memory it’s not enough for users to be tested just once on their recall. Instead, a few days after first reading the essay, the user receives an email asking them to sign into a review session. In that review session they’re tested again, in a manner similar to what was shown above. Then, through repeated review sessions in the days and weeks ahead, people consolidate the answers to those questions into their long-term memory.
我们用卡片 来形容这些界面元素配对的问答题和答案。
当然,对于长期记忆来说,只对用户进行一次回忆性的测试是不够的。相反,在第一次阅读文章的几天后,用户会收到一封邮件,要求他们进行一个复习会话。在那个复习会话中,他们会再次接受测试,测试方式与上图类似。然后,通过未来几天和几周的反复复习会话,人们将这些问题的答案巩固到他们的长期记忆中。
So far, this looks like no more than an essay which integrates old-fashioned flashcards. But notice the intervals indicated at the bottom of the cards:
到目前为止,这看起来不外乎是一篇整合了老式闪卡的作文。但注意到卡片底部标注的间隔。
The highlighted time interval is the duration until the user is tested again on the question. Questions start out with the time interval “in-text”, meaning the user is being tested as they read the essay. That rises to five days, if the user remembers the answer to the question. The interval then continues to rise upon each successful review, from five days to two weeks, then a month, and so on. After just five successful reviews the interval is at four months. If the user doesn’t remember at any point, the time interval drops down one level, e.g., from two weeks to five days.
突出显示的时间间隔是指直到用户再次被测试的时间段。问题一开始的时间间隔是 "in-text",即用户在阅读文章时被测试。如果用户记住了问题的答案,这个时间间隔会上升到五天。然后,每次成功复习后,时间间隔会继续上升,从五天到两周,再到一个月,以此类推。仅仅五次成功复习后,间隔时间为四个月。如果用户在任何时候不记得了,时间间隔就会下降一级,例如,从两周到五天。
This takes advantage of a fundamental fact about human memory: as we are repeatedly tested on a question, our memory of the answer gets stronger, and we are likely to retain it for longer. This exponential rise perhaps seems innocuous, but it’s transformative. It means that a relatively small number of reviews will enable a user to remember for years. With the time taken to review a typical question being just a few seconds, that means a user can achieve long-term recall with no more than a few minutes’ work. By contrast, with conventional flashcards it takes hours of review to achieve the same durability. Exponential scheduling is far more efficient.
这就利用了人类记忆力的一个基本事实:当我们对一个问题进行反复测试时,我们对答案的记忆力就会变得更强,我们很可能会保留更长的时间。这种指数级的上升也许看似无伤大雅,但它是有转化作用的。它意味着,相对较少的复习次数就能让用户记忆多年。而复习一道典型题的时间只有几秒钟,这意味着用户只需花费几分钟的时间就能实现长期记忆。相比之下,传统的闪卡需要数小时的复习时间才能达到同样的持久性。指数式排课效率要高得多。
The early impact of the prototype mnemonic medium | 原型记忆体媒介的早期影响
Although it’s early days for Quantum Country we can begin to see some of the impact of the mnemonic medium. Plotted below is the demonstrated retention of answers for each user, versus the number of times each question in the mnemonic essay has been reviewed:
虽然对于量子之国来说,现在还处于早期,但我们可以开始看到补习题作文的一些影响。下图是每个用户对答案的保留率,与记忆体论文中每个问题的复习次数对比。

The graph takes a little unpacking to explain. By a card’s “demonstrated retention” we mean the maximum time between a successful review of that card, and the prior review of that card. A little more concretely, consider repetition number 6, say (on the horizontal axis). At the point, a user has reviewed all 112 questions in the essay 6 times. And the vertical axis shows the total demonstrated retention, summed across all cards, with each blue dot representing a single user who has reached repetition 6.
这张图需要稍作解释。我们所说的卡片的 "显示保留率 "是指从成功复习该卡片到之前复习该卡片的最长时间。再具体一点,考虑一下重复6号,比如说(在横轴上)。在这个点上,一个用户把作文中的112道题全部复习了6次。纵轴上显示的是所有卡片的总保留率,每个蓝色的点代表一个用户达到了6次重复率。
So, for instance, after 6 repetitions, we see from the graph that most users are up around 6,000 days of demonstrated retention. That means an average of about 6,000 / 112 ~ 54 days per question in the essay. Intuitively, that seems pretty good – if you’re anything like us, a couple of months after reading something you have only a hazy memory. By contrast, these users have, at low time cost to themselves (of which more below), achieved nearly two months of demonstrated retention across 112 detailed questions.
所以,比如说,在重复6次之后,我们从图中看到,大部分用户的展示留存天数都在6000天左右。也就是说,平均每篇文章中的每道题的留存天数约为6000/112~54天。直观上看,这似乎还算不错---如果你和我们一样,看完一两个月的东西后,你的记忆力就只有朦朦胧胧的。相比之下,这些用户在自己付出了较低的时间成本(其中更多的内容在下文),在112个详细的问题中,实现了近两个月的示范性保留。
Furthermore, you can see the exponential rise in retention with the number of times cards have been reviewed. After the first review, users typically have an average of just over 2 days of demonstrated retention, per cardParticularly careful readers may wonder how this is possible, given that we stated earlier that the first review interval is 5 days. The explanation is that we recently modified the review schedule so the first review is after 5 days. For most of Quantum Country’s history the review schedule was more conservative, and this is the reason for the difference.. But by the sixth review that rises to an average of 54 days of demonstrated retention. That typically takes about 95 minutes of total review time to achieve. Given that the essay takes about 4 or so hours to read, this suggests that a less than 50% overhead in time commitment can provide many months or years of retention for almost all the important details in the essay.
此外,你可以看到,随着卡的复核次数的增加,用户的留存率呈指数级上升。在第一次复审后,用户通常平均每张卡的平均留存时间仅有2天多一点,特别细心的读者可能会想知道这怎么可能,因为我们之前说过第一次复审的时间间隔是5天。解释是我们最近修改了审核时间,所以第一次审核是在5天之后。在量子国历史上的大部分时间里,复审时间表都是比较保守的,这也是造成这种差异的原因。但到了第六次复审时,这已经上升到了平均54天的复审时间。这一般需要95分钟左右的总复习时间才能达到。考虑到作文需要4个小时左右的阅读时间,这就说明,在时间投入上开销不到50%,几乎可以为作文中的所有重要细节提供很多个月甚至几年的留存。
This is the big, counterintuitive advantage of spaced repetition: you get exponential returns for increased effort. On average, every extra minute of effort spent in review provides more and more benefit. This is in sharp contrast with most experiences in life, where we run into diminishing returns. For instance, ordinarily if you increase the amount of time you spend reading by 50%, you expect to get no more than 50% extra out of it, and possibly much less. But with the mnemonic medium when you increase the amount of time you spend reading by 50%, you may get 10x as much out of it. Of course, we don’t quite mean those numbers literally. But it does convey the key idea of getting a strongly non-linear return. It’s a change in the quality of the medium.
这就是间隔复习的大的、反直觉的优势:你付出更多的努力就能得到指数级的回报。平均来说,在复习中每多花一分钟的精力,就能获得越来越多的收益。这与生活中的大多数经验形成了鲜明的对比,我们会遇到回报递减的情况。例如,通常情况下,如果你把阅读的时间增加50%,你期望从中获得的额外收益不会超过50%,甚至可能更少。但是,在记忆介质中,当你增加50%的阅读时间,你可能会得到10倍的回报。当然,我们并不完全是指这些数字的字面意思。但它确实传达了一个关键的思想,那就是获得强烈的非线性回报。这是一种媒介质量的变化。
This delayed benefit makes the mnemonic medium unusual in multiple ways. Another is this: most online media use short-term engagement models, using variations on operant conditioning to drive user behavior. This is done by Twitter, Facebook, Instagram, and many other popular media forms. The mnemonic medium is much more like meditation – in some ways, the anti-product, since it violates so much conventional Silicon Valley wisdom – in that the benefits are delayed, and hard to have any immediate sense of. Indeed, with the mnemonic medium, the greater the delay, the more the benefit.
这种延时性的收益使得记忆型媒介在多个方面都不寻常。另一个是这样的:大多数在线媒体使用短期参与模型,利用操作性调节的变体来驱动用户行为。Twitter、Facebook、Instagram和许多其他流行的媒体形式都是这样做的。记忆型媒体更像是冥想---在某些方面,它是反产品,因为它违反了很多硅谷的传统智慧---因为它的好处是延迟性的,很难有任何立竿见影的感觉。事实上,对于记忆力媒介来说,延迟越大,收益越大。
These are preliminary results, and need more investigation. One naturally wonders what would happen if we’d been much more aggressive with the review schedule, setting the initial interval between reviews to (say) 2 months? If users reliably retained information up to that point, then the graph would start very high, and we wouldn’t see the exponential. We need to investigate these and many similar questions to better understand what’s going on with user’s memories.
这些都是初步结果,还需要进一步调查。人们自然会想知道,如果我们把审查时间安排得更积极,把最初的审查时间间隔设置为(比如说)2个月,会发生什么?如果用户能可靠地保留信息到这个时间点,那么图表的起始时间就会很高,我们就不会看到指数。我们需要研究这些问题和很多类似的问题,才能更好地理解用户的记忆是怎么回事。
Early feedback from users makes us cautiously optimistic that they’re finding the mnemonic medium useful. In May 2019, one of us posted to Twitter a short thread explaining the technical details of how quantum teleportation works. One user of Quantum Country replied to the thread with:
来自用户的早期反馈让我们谨慎乐观地认为,他们发现这个符号媒介很有用。2019年5月,我们中的一位用户在Twitter上发了一个短线程,解释了量子传送的技术细节。量子之国的一位用户回复了这条线程,用。
I’ve only done your first quantum country course (so far) but I find it remarkable that I can view the proof and follow it, knowing what everything means. It’s almost like Neo in The Matrix telling Morpheus, ‘I know quantum computing’ In the movie The Matrix one of the characters (Neo) uses a computer to very rapidly upload martial arts skills into his mind. As he opens his eyes after completing the upload he tells another character (Morpheus): “I know Kung Fu”..
我只做了你的第一堂量子之国课程(到目前为止),但我觉得很了不起,我可以看完证明,并跟着看,知道一切的意思。这几乎就像《黑客帝国》中的尼奥告诉莫菲斯,'我知道量子计算'在电影《黑客帝国》中,其中一个角色(尼奥)用电脑非常快速地将武功上传到他的脑海中。当他完成上传后睁开眼睛时,他告诉另一个角色(Morpheus)。"我知道功夫".....
A user with significantly more prior experience of quantum computing wrote:
一位之前有明显更多量子计算经验的用户写道。
I have a PhD in quantum information/computing and I knew everything in the essay before reading it, but the additional understanding I got from doing the given spaced repetition flashcards significantly improved my understanding of the material. Everyone who is reading this essay, should sign up and give spaced repetition a try.
我是量子信息/计算机专业的博士,在读这篇文章之前,我对这篇文章中的所有内容都有所了解,但通过做给定的间隔重复闪读卡,我得到了额外的理解,大大改善了我对材料的理解。每一个正在读这篇文章的人,都应该报名参加并试一试。
Another user, new to quantum computing, told us that Quantum Country “is by far the best way that I could imagine being introduced to this material”. When we asked how he’d used what he’d learned, he explained that when a visitor to his company gave a technical seminar about quantum computing, he expected to get lost after about 10 minutes. Instead:
另一位刚接触量子计算的用户告诉我们,量子之国 "是迄今为止我能想象到的最好的介绍这种材料的方式"。当我们问到他是如何运用所学知识的时候,他解释说,当他的公司里有一位访客给他的公司做了一个关于量子计算的技术讲座时,他预计大约10分钟后就会迷路。相反。
Wow, I actually followed that for 40 or 45 minutes because the matrices looked familiar… [the medium means] you run into concepts over and over again… It affords interactions at a more effective level of abstraction.
"哇,实际上我看了40或45分钟,因为矩阵看起来很熟悉.[媒介意味着]你会一遍又一遍地碰到概念.它提供了更有效的抽象层面的互动。
Site analytics show a constant flow of people steadily working through the review sessions in the manner we intended. Six months after release of the prototype, 195 users had demonstrated one full month of retention on at least 80% of cards in the essay, demonstrating an extraordinary level of commitment to the process. We don’t yet have a good model of exactly what those people are learning, but it seems plausible they are taking away considerably more than from a conventional essay, or perhaps even from a conventional class.
网站分析显示,不断有人按照我们的预期方式稳定地完成复习课程。在原型发布6个月后,195个用户在文章中至少80%的卡片上表现出了整整一个月的留存率,显示出他们对这个过程的投入程度非同一般。我们还没有一个很好的模型来说明这些人到底学到了什么,但似乎有理由相信,他们的收获要比传统的作文课,甚至可能是传统的课文课要多得多。
Of course, this kind of feedback and these kinds of results should be taken with a grain of salt. The mnemonic medium is in its early days, has many deficiencies, and needs improvement in many ways (of which more soon). It is, however, encouraging to hear that some users already find the medium exceptionally helpful, and suggests developing and testing the medium further. At a minimum, it seems likely the mnemonic medium is genuinely helping people remember. And furthermore it has the exponentially increasing efficiency described above: the more people study, the more benefit they get per minute studied.
当然,这样的反馈和这样的结果,还是要慎重对待。记忆介质还处于早期阶段,有许多不足之处,需要在许多方面进行改进(更多的内容很快就会有)。然而,令人鼓舞的是,听到一些用户已经发现这种媒介的帮助非常大,建议进一步开发和测试这种媒介。最起码,它很可能是真正帮助人们记忆的记忆媒介。此外,它还具有上述的指数级增长的效率:人们学习的越多,每学习一分钟就会得到越多的好处。
In another informal experiment, we tried to figure out how much it affected user’s memories when they weren’t asked to review cards. To do this, we introduced a deliberate short (two-week) delay on reviews for a small subset of 8 cards. That is, some users would review those 8 cards upon an initial read, and then would be prevented from reviewing them again for at least two weeks. Other users would continue to study as normal on the 8 cards. By comparing the two groups we could estimate the effect that reviewing the cards had on user’s memories.
在另一个非正式的实验中,我们试图弄清楚当用户没有被要求复习卡片时,它对用户的记忆影响有多大。为了做到这一点,我们特意对8张卡片的一小部分子集的复习引入了短暂(两周)的延迟。也就是说,有些用户在初次阅读后会对这8张卡进行复习,然后至少两周内不能再进行复习。而其他用户则会像正常人一样继续复习这8张卡。通过比较两组用户,我们可以估算出复习卡片对用户记忆的影响。
What happened? Well, for those users whose reviews were delayed, accuracy dropped from 91% (upon the initial read) to 87% (after two weeks). This may seem a small drop, but keep in mind that users continued to review other cards, which almost certainly boosted their final performance, since those other cards had some overlap in content with the delayed cards. It’s difficult to avoid this kind of overlap without delaying reviews on all cards, a more drastic change in user experience than we wanted to impose. For users who were asked to review the cards as normal, accuracy improved from 89% to 96%. The short summary is: when users didn’t review the cards, accuracy dropped by 4%; when they did review the cards, accuracy increased by 7% In more detail: there were 16 users in the group that did the reviews, per usual, and 25 users in the group where reviews were delayed. The 95% confidence intervals were: 91 ± 4%, 87 ± 5%, 89 ± 5%, 96 ± 3%, assuming each variable is binomial, independent and identically distributed. This latter assumption is approximate, since we’d expect some user- and question-dependent effects. Note also that this was done in an earlier version of Quantum Country, where the review schedule had intervals of one day, three days, one week, and and two weeks..
发生了什么事?嗯,对于那些评论被延迟的用户来说,准确率从91%(初次阅读时)下降到87%(两周后)。这似乎是一个很小的下降,但请记住,用户继续评论其他卡牌,这几乎肯定会提升他们的最终表现,因为这些其他卡牌的内容与延迟的卡牌有一些重叠。要避免这种重叠,而不对所有的卡牌进行延迟点评是很难避免的,这对用户体验的改变要比我们想强加的更剧烈。对于被要求像正常审阅卡片的用户,准确率从89%提高到96%。简单的总结是:当用户不复习卡片时,准确率下降了4%;当他们复习卡片时,准确率提高了7%。95%的置信区间为。91±4%、87±5%、89±5%、96±3%,假设每个变量都是二项式的、独立的、同向分布的。后一个假设是近似的,因为我们会预期一些用户和问题相关的影响。还请注意,这是在量子国的早期版本中做的,其中复习计划有1天、3天、1周和2周的时间间隔。
Another way of looking at the data from this informal experiment is to ask which users saw improved or unchanged performance, and which saw their performance get worse. In fact, every single user (100%) who reviewed cards on the regular schedule saw their performance either stay the same or improve. By contrast, 40% of the users whose reviews were delayed saw their performance get worse, while 60% saw it stay the same or improve.
从这个非正式实验的数据来看,另一种方法是询问哪些用户看到了性能提高或不变,哪些用户看到了性能变差。事实上,每一个在常规时间内复习卡片的用户(100%)都看到他们的性能保持不变或提高。相比之下,40%的复习卡被推迟的用户中,40%的用户看到他们的性能变差,而60%的用户看到性能保持不变或提高。
These are small-but-promising results. Of course, our experiment was only done over two weeks, and we’d expect larger effects in experiments done over longer periods. And, as already mentioned, the effect is likely diminished by overlaps between the cards. Nonetheless, this informal experiment again suggests the mnemonic medium is helping people’s memory, and suggests more comprehensive studies.
这些都是小的但有希望的结果。当然,我们的实验只做了两个星期,我们希望在更长的时间段内做的实验会有更大的效果。而且,如前所述,这种效果很可能会因为卡片之间的重叠而减弱。尽管如此,这个非正式的实验再次表明,记忆介质对人们的记忆力有帮助,并建议进行更全面的研究。
Despite these suggestive preliminary results, it’s still tempting to be dismissive. Isn’t this “just” an essay with flashcards embedded? At some level, of course, that’s correct. In the same way, wikis are just editable web pages; Twitter is just a way of sharing very short form writing; and Facebook is just a way of sharing writing and pictures with friends. Indeed, writing itself is just a clever way of ordering a small number of symbols on a page. While a medium may be simple, that doesn’t mean it’s not profound. As we shall see, the mnemonic medium has many surprising properties. It turns out that flashcards are dramatically under-appreciated, and it’s possible to go much, much further in developing the mnemonic medium than is a priori obvious.
尽管有这些暗示性的初步结果,但还是很容易让人不屑一顾。这不就是 "仅仅 "嵌入了flashcards的文章吗?在某种程度上,这当然是正确的。同样的,维基百科只是可编辑的网页;Twitter只是分享非常简短的写作方式;Facebook只是与朋友分享写作和图片的方式。事实上,写作本身只是在页面上巧妙地将少量的符号进行排序。虽然一种媒介可能很简单,但并不意味着它不深刻。正如我们将要看到的那样,记忆的媒介有许多令人惊讶的特性。事实证明,记忆卡被大大地低估了,而且在记忆媒介的发展上,它有可能比先验地明显地走得更远,更远。
Before we delve deeper into the mnemonic medium, let’s mention one challenge in the discussion: the inherent difficulty in achieving a good balance between conveying enthusiasm and the kind of arm’s-length skepticism appropriate for evaluation. On the one hand, we would not have built the mnemonic medium if we weren’t excited about the underlying ideas, and wanted to develop those enthusiasms. To explain the mnemonic medium well, we need to bring you, the reader, inside that thinking. But having done that, we also need to step back and think more skeptically about questions such as: is this medium really working? What effect is it actually having on people? Can it be made 10x better? 100x better? Or, contrariwise, are there blockers that make this an irredeemably bad or at best mediocre idea? How important a role does memory play in cognition, anyway? So far, we’ve focused on the enthusiastic case for the medium, why one might consider this design at all. But later in this essay we’ll gradually step back and reflect in a more skeptical frame.
在我们深入探讨记忆体媒介之前,让我们先提一下讨论中的一个挑战:在传递热情和适合于评估的怀疑主义之间取得良好的平衡,这本身就是一种困难。一方面,如果我们不对基本的想法感到兴奋,并希望发展这些热情,我们就不会建立起记忆体媒介。要想很好地解释记忆媒介,我们需要把你,即读者,带入到这种思考中去。但在做了这些之后,我们还需要退后一步,对一些问题进行更多的怀疑性思考,比如:这个媒介真的有效吗?它到底对人有什么影响?能否让它的效果好10倍?100倍更好?或者,相反地,是否有阻碍因素使其成为一个无法挽回的坏主意或充其量是平庸的主意?记忆在认知中到底有多重要的作用?到目前为止,我们已经把重点放在了热衷于媒介的案例上,为什么人们可能会考虑这种设计。但在这篇文章的后面,我们将逐渐退后一步,在一个更怀疑的框架下进行反思。
Expanding the scope of memory systems: what types of understanding can they be used for? | 扩大内存系统的范围:可以用于哪些类型的理解?
Quantum Country is an example of a memory system. That is, it’s a system designed to help users easily consolidate what they’ve learned into long-term memory. It’s part of a long history of memory systems, going back to ancient times, when the orator Cicero and the rhetorician Quintilian described mnemonic techniques that could be used to memorize long texts.
量子国是一个记忆系统的例子。也就是说,它是一个系统,旨在帮助用户轻松地将所学到的知识整合成长期记忆。它是历史悠久的记忆系统的一部分,可以追溯到古代,当时的演说家西塞罗和修辞家昆蒂利安描述了可以用来记忆长篇文字的记忆技巧。
In modern times, many memory systems have been developed. Among the better known are Anki, SuperMemo, Quizlet, Duolingo, and Memrise. Like Quantum Country, each of these systems uses increasing time intervals between reviews of particular questions. Such systems are sometimes known as spaced-repetition memory systems (or SRM systems) Strictly speaking, Quizlet’s basic product doesn’t use spaced repetition. There is, however, a paid version using spaced repetition, and it’s otherwise quite similar to many of these systems.. They’re usually justified in a manner similar to our explanation for Quantum Country: some notion of each review gradually increasing the consolidation strength for a memory.
在现代,许多记忆系统已经被开发出来。其中比较著名的有Anki、SuperMemo、Quizlet、Duolingo和Memrise。就像量子国一样,这些系统都采用了增加复习特定问题的时间间隔。这种系统有时被称为间隔重复记忆系统(或SRM系统)严格来说,Quizlet的基本产品不使用间隔重复。然而,有,但是,有一个付费版本使用间隔重复,而且它是非常类似于许多这些系统。它们通常以类似于我们对量子国的解释的方式来论证:每次复习都会逐渐增加记忆的巩固强度的一些概念。
SRM systems are most widely used in language learning. Duolingo, for instance, claims 25 million monthly active users. Reports are mixed on success. Some serious users are enthusiastic about their success with Duolingo. But others find it of limited utility. The company, of course, touts research showing that it’s incredibly successful. It seems likely to us that Duolingo and similar systems are useful for many users as part of (but only part of) a serious language learning program.
SRM系统在语言学习中应用最为广泛。例如,Duolingo,声称每月有2500万活跃用户。关于成功的报告不一而足。一些认真的用户热衷于使用Duolingo获得了成功。但也有一些人觉得它的作用有限。当然,该公司兜售的研究表明,它是非常成功的。在我们看来,Duolingo和类似的系统作为一个严肃的语言学习计划的一部分(但只是其中的一部分),对许多用户来说是有用的。
What about memory systems for uses beyond language? Quizlet is popular, with 50 million monthly active users. It’s widely used in classrooms, especially for simple declarative knowledge – lists of American Presidents, capitals of countries, and so on. Anki and SuperMemo seem to most often be used for similar simple declarative knowledge, but have much smaller active user bases than Quizlet They are, however, widely used within some interesting niche audiences. For instance, there is a thriving population of medical students using Anki..
记忆系统在语言之外的用途呢?Quizlet很受欢迎,每月有5000万活跃用户。它在课堂上被广泛使用,尤其是用于简单的陈述性知识--美国总统名单、国家首都等。Anki和SuperMemo似乎最常被用于类似的简单声明性知识,但其活跃用户群比Quizlet小得多。例如,有一个蓬勃发展的人口使用Anki的医学生。
One of the ideas motivating Quantum Country is that memory systems aren’t just useful for simple declarative knowledge, such as vocabulary words and lists of capitals. In fact, memory systems can be extraordinarily helpful for mastering abstract, conceptual knowledge, the kind of knowledge required to learn subjects such as quantum mechanics and quantum computing. This is achieved in part through many detailed strategies for constructing cards capable of encoding this kind of understanding. But, more importantly, it’s possible because of the way the mnemonic medium embeds spaced repetition inside a narrative. That narrative embedding makes it possible for context and understanding to build in ways difficult in other memory systems.
激发量子国家的一个想法是,记忆系统不仅对简单的陈述性知识有用,比如词汇和大写字母表。事实上,记忆系统对于掌握抽象的、概念性的知识,也就是学习量子力学和量子计算等学科所需的知识,是非常有帮助的。这在一定程度上是通过许多构建能够编码这种理解的卡片的详细策略来实现的。但是,更重要的是,它之所以能够实现,是因为记忆媒介将间隔重复嵌入叙事的方式。这种叙事的嵌入方式使得语境和理解能够以其他记忆系统难以企及的方式建立起来。
Other people have also developed ways of using memory systems for abstract, conceptual knowledge. Perhaps most prominently, the creator of the SuperMemo system, Piotr Wozniak, has written extensively about the many ingenious ways he uses memory systemsMore generally, Wozniak is, along with Sebastian Leitner, the principal pioneer of spaced-repetition memory systems. Much of Wozniak’s thinking is available online at (or linked from) the remarkable SuperMemopedia.. And several other expert users of memory systems have also developed similar strategies. However, employing those strategies requires considerable skill. In practice, that skill barrier has meant these strategies are used by no more than a tiny handful of people.
其他人也开发出了利用记忆系统进行抽象的、概念性知识的记忆系统的方法。也许最突出的是,SuperMemo系统的创造者Piotr Wozniak,他曾写过很多关于他使用记忆系统的巧妙方法的文章。Wozniak的许多思想都可以在SuperMemopedia上找到(或链接到)。而其他几个记忆系统的专家用户也开发了类似的策略。然而,运用这些策略需要相当的技巧。在实践中,这种技能障碍意味着只有极少数人使用这些策略。
By contrast, in Quantum Country an expert writes the cards, an expert who is skilled not only in the subject matter of the essay, but also in strategies which can be used to encode abstract, conceptual knowledge. And so Quantum Country provides a much more scalable approach to using memory systems to do abstract, conceptual learning. In some sense, Quantum Country aims to expand the range of subjects users can comprehend at all. In that, it has very different aspirations to all prior memory systems.
相比之下,在量子国中,有一个专家来写卡片,这个专家不仅熟练掌握了文章的主题内容,还掌握了可以用来编码抽象的、概念性知识的策略。于是,量子国提供了一种更可扩展的方法,利用记忆系统来做抽象的、概念性的学习。从某种意义上说,量子国的目的是为了扩大用户能够理解的学科范围。在这一点上,它与之前所有的记忆系统有着非常不同的愿望。
More generally, we believe memory systems are a far richer space than has previously been realized. Existing memory systems barely scratch the surface of what is possible. We’ve taken to thinking of Quantum Country as a memory laboratory. That is, it’s a system which can be used both to better understand how memory works, and also to develop new kinds of memory system. We’d like to answer questions such as:
更普遍的说,我们认为内存系统是一个比以前认识到的更丰富的空间。现有的内存系统勉强可以做到的事情还远远不够。我们已经把量子国当成了一个内存实验室。也就是说,这个系统既可以用来更好地理解记忆的工作原理,也可以用来开发新型的记忆系统。我们想回答这样的问题,比如。
- What are new ways memory systems can be applied, beyond the simple, declarative knowledge of past systems?
- How deep can the understanding developed through a memory system be? What patterns will help users deepen their understanding as much as possible?
- How far can we raise the human capacity for memory? And with how much ease? What are the benefits and drawbacks?
- Might it be that one day most human beings will have a regular memory practice, as part of their everyday lives? Can we make it so memory becomes a choice; is it possible to in some sense solve the problem of memory?
- 记忆系统的应用有哪些新的方式,超越了过去系统中简单的、声明性的知识,可以应用到哪些方面?
- 通过记忆系统开发的理解能有多深?什么样的模式可以帮助用户尽可能地加深理解?
- 我们能将人类的记忆能力提升到什么程度?又能在多大程度上轻松实现?又有哪些好处和缺点?
- 会不会有一天,大多数人都会有固定的*记忆练习,作为日常生活的一部分?我们能否让记忆成为一种选择;是否有可能在某种意义上解决记忆问题?
Over the next few sections we sketch out some of our thinking about how memory systems may be developed. We’ll see that memory systems are a small part of a much bigger picture. Not only is seriously developing memory systems likely to lead to one or more transformative tools for thought, we also believe it will teach us much about the general problem of developing such tools.
在接下来的几个章节中,我们将勾勒出我们对内存系统可能如何开发的一些思考。我们将看到,记忆系统是更大范围内的一个小部分。认真地开发记忆系统不仅可能导致一种或多种转换性的思想工具,我们也相信它将教会我们许多关于开发这种工具的一般问题。
Improving the mnemonic medium: making better cards | 改进记忆介质:制作更好的卡片
In writing mnemonic essays, it’s tempting to treat the content of the cards rather casually. After all, a card is just a question and an answer, each containing a little text, perhaps a figure. Surely they ought to be easy to write?
在写记事作文时,很容易让人觉得对待卡片的内容比较随意。毕竟,一张卡片只是一个问题和一个答案,每张卡片上都有一个小小的文字,也许是一个数字。当然,它们应该是很容易写的吗?
While thinking in this way is tempting, it’s a mistake. In fact, cards are fundamental building blocks of the mnemonic medium, and card-writing is better thought of as an open-ended skill. Do it poorly, and the mnemonic medium works poorly. Do it superbly well, and the mnemonic medium can work very well indeed. By developing the card-writing skill it’s possible to expand the possibilities of the medium.
虽然这种思维方式很诱人,但这是个错误。事实上,卡片是记忆媒介的基本构件,而卡片写作最好被认为是一种开放式的技能。做得不好,记忆媒介的效果就会很差。如果做得很好,那么这个记忆媒介的效果就会非常好。通过发展卡片写作的技巧,它可以扩大媒介的可能性。
A helpful comparison is to the sentence in written prose. For the beginning writer it’s tempting to treat sentences casually. But in the hands of a great writer – say, a Nabokov – sentences can be developed into a virtuoso artform. What would it take to achieve virtuoso skill in writing the cards of the mnemonic medium?
一个有用的比较方法是将句子与书面散文中的句子进行比较。对于初学写作的人来说,对句子的处理很有诱惑力。但在一个伟大的作家手中--比如说,纳博科夫--句子可以发展成一种大师级的艺术形式。如何才能在书写记忆体的卡片上达到大师级的技巧呢?
It’s not obvious a priori that writing cards is such a rich activity. One of us wrote 17,000- and 6,000-word essays whose subject was in large part understanding how to write good cards. He didn’t realize that was going to be the subject when he began writing; it only became clear in retrospect how rich card writing is. It turns out that answering the question “how to write good cards?” requires thinking hard about your theory of knowledge and how to represent it, and your theory of learning. The better those theories, the better your cards will be. Small wonder it’s a rich, open-ended problem!
写卡片是一项内容如此丰富的活动,这一点并不明显 先验。我们有一个人写了一万七千字和六千字的文章,其主题很大程度上是理解如何写好卡片。他在开始写的时候,并没有意识到这将是一个主题;回想起来才知道写卡片的内容是多么的丰富。原来,要回答 "如何写好卡片?"这个问题,需要认真思考自己的知识理论,以及如何表现知识的理论,还有自己的学习理论。这些理论越好,你的卡片就会越好。难怪这是个内容丰富、开放性的问题!
All that said, let’s make a few concrete observations about good card-writing. While the specific examples that follow are relatively banal, they should give you some feeling for the profound issues that arise in improving the mnemonic medium. We’ll begin with three principles we used when writing the cards in Quantum Country. Note that these are just three of many more principles – a more detailed discussion of good principles of card construction may be found in Augmenting Long-term Memory.
说了这么多,我们来谈谈关于写好卡片的一些具体看法。虽然下面的具体例子比较平淡,但它们应该能让你对提高记忆力的媒介的深刻问题有一定的感受。我们先从我们在《量子国》中写卡片时使用的三个原则开始。请注意,这些只是许多原则中的三个--关于好的卡片构造原则的更详细的讨论可以在增强长期记忆中找到。
- Most questions and answers should be atomic: Early in his own personal memory practice, one of us was learning the Unix command to create links in the filesystem. He entered the following question into his memory system: “How to create a soft link from linkname to filename”. Together with the corresponding answer “ln -s filename linkname”. This looks like a good question, but he routinely forgot the answer. To address this, he refactored the card into two more atomic cards. One card: “What’s the basic command and option to create a soft link?” (A: “ln -s”). Second card: “When creating a soft link, in what order do linkname and filename go?” (A: “filename linkname”). Breaking the card into more atomic pieces turned a question he routinely got wrong into two questions he routinely got right. It seemed that the more atomic questions brought more sharply into focus what he was forgetting, and so provided a better tool for improving memory. And what of the original card? Initially, he deleted it. But he eventually added the card back, with the same question and answer, since it served to integrate the understanding in the more atomic cards.
- 大多数问题和答案应该是原子式的。早在自己的个人记忆实践中,有一个人在学习Unix命令在文件系统中创建链接的时候,他就在学习Unix命令。他在自己的记忆系统中输入了以下问题。"如何创建一个从文件名到文件名的软链接"。再加上相应的答案 "ln -s filename linkname"。这个问题看起来是个好问题,但他经常性地忘记了答案。为了解决这个问题,他又把这个卡重构为两个原子卡。一张卡。"创建软链接的基本命令和选项是什么?" 答:"ln -s")。第二张卡。"创建软链接时,链接名和文件名按什么顺序排列?" 答:"filename linkname")。把卡片拆成更多的原子块,把他经常做错的一道题变成了他经常做对的两道题。看来,更多的原子题让他更鲜明地突出了他遗忘的内容,从而为提高记忆力提供了更好的工具。而原来的卡片呢?一开始,他把它删掉了。但他最终还是把卡片加了回来,用的是同样的问答题,因为它的作用是在更多的原子卡中整合了理解。
- Make sure the early questions in a mnemonic essay are trivial: it helps many users realize they aren’t paying enough attention as they read:Note added December 9, 2019: This claim appears to be based on an error in our data analysis, and is now retracted. We’ve left the text in for historic reasons, but we no longer believe the claim. This was a discovery made when we released the first Quantum Country essay. Anticipating that users would be struggling with a new interface, we deliberately made the first few questions in the essay utterly trivial – sort of a quantum equivalent to “2+2 = ?” – so they could focus on the interface. To our surprise, users performed poorly on these questions, worse than they did on the (much harder) later questions. Our current hypothesis to explain this is that when users failed to answer the first few questions correctly it served as a wakeup call. The questions were so transparently simple that they realized they hadn’t really been paying attention as they read, and so were subsequently more careful.
- 确保记忆力作文中的早期问题是琐碎的:这有助于很多用户在阅读时意识到自己的注意力不够集中:2019年12月9日补充说明:这个说法似乎是基于我们的数据分析中的一个错误,现在收回。由于历史原因,我们把文字留在了里面,但我们不再相信这个说法。这是我们在发布第一篇量子国文时发现的。预计到用户会在新界面上纠结,我们特意把文章中的前几个问题做得非常微不足道--有点像 "2+2=? - 所以他们可以专注于界面。令我们惊讶的是,用户在这些问题上的表现很差,比他们在后面的问题上表现得更差。我们目前的假设是,当用户不能正确回答前几个问题的时候,我们的假设是,当用户不能正确回答前几个问题的时候,这就起到了警醒的作用。这些问题是如此的简单,以至于他们意识到自己在阅读时并没有真正注意到,所以后来更加小心翼翼。
- Avoid orphan cards: These are cards which don’t connect closely to anything else. Suppose, for the sake of illustration, that you’re trying to learn about African geography, and have a question: “What’s the territory in Africa that Morocco disputes?” (A: “The Western Sahara”) If you don’t know anything about the Western Sahara or Morocco or why there’s a dispute, that question will be an orphan, disconnected from everything else. Ideally, you’ll have a densely interconnected web of questions and answers, everything interwoven in striking ways.
- 避开孤立卡。这类卡片是指与其他事物没有紧密联系的卡片。为了说明问题,假设你想学习非洲地理知识,有一个问题。"摩洛哥在非洲有哪些领土是摩洛哥争夺的?" (答:《西撒哈拉》)如果你对西撒哈拉和摩洛哥一无所知,也不知道为什么会有争端,那么这个问题就会成为一个孤家寡人,与其他的一切都脱节。最理想的情况是,你会有一张密密麻麻的问题和答案之网,所有的一切都以惊人的方式交织在一起。
Ultimately, we’d like to distill out a set of useful practical principles and idioms to help write good cards and, more generally, good mnemonic essays. Aspirationally, such a set of principles and idioms would work much like The Elements of Style (or some similar book of prose advice), and would help other people learn to write high-quality mnemonic essays.
最终,我们希望提炼出一套有用的实用原则和成语,以帮助写出好的卡片,更普遍地说是写出好的记事作文。从长远来看,这样一套原则和成语的作用很像《文体要素》(或一些类似的散文建议书),可以帮助其他人学习写出高质量的记忆力作文。
When we first described Quantum Country above we explained it using a simple model of spaced repetition: increased consolidation strength for memories leading to increased time intervals between reviews. This is a helpful simple model, but risks creating the misleading impression that it’s all that’s going on in the system. In fact, for the mnemonic medium to work effectively, spaced repetition must be deployed in concert with many other ideas. The three ideas we just described – atomicity of questions and answers, making early questions trivial, avoiding orphan cards – are just three of dozens of important ideas used in the mnemonic medium. We won’t enumerate all those other ideas here – that’s not the purpose of this essay. But we want to emphasize this point, since it’s common for people to have the simplistic model “good memory system = spaced repetition”. That’s false, and an actively unhelpful way of thinking.
当我们在上面第一次描述量子国时,我们用了一个简单的间隔重复模型来解释:增加记忆的巩固强度导致复习时间间隔增加。这是一个很有帮助的简单模型,但有可能造成误导性的印象,认为这就是系统中的全部内容。事实上,要使记忆媒介有效地发挥作用,间隔重复必须与许多其他想法协同部署。我们刚才描述的三个想法----问答的原子性、使早期的问题变得琐碎、避免孤儿卡--仅仅是记忆媒介中使用的几十个重要想法中的三个。我们不会在此列举所有这些其他思想--这不是本文的目的。但我们想强调这一点,因为人们常有 "好的记忆系统=间隔重复 "的简单化模式。这是错误的,也是一种积极无益的思维方式。
Indeed, thinking in this way is one reason spaced-repetition memory systems often fail for individuals. We often meet people who say “Oh, I thought spaced repetition sounded great, and I tried Anki [etc], but it doesn’t work for me”. Dig down a little, and it turns out the person is using their memory system in a way guaranteed to fail. They’ll be writing terrible questions, or using it to learn a subject they don’t care about, or making some other error. They’re a little like a person who thinks “learning the guitar sounds great”, picks it up for half an hour, and then puts it down, saying that they sound terrible and therefore it’s a bad instrument. Of course, what’s really going on is that the guitar and memory systems are both skills that take time to develop. But, with that said, we want to build as much support as possible into the medium. Ideally, even novices would benefit tremendously from the mnemonic medium. That means building in many ideas that go beyond the simplistic model of spaced repetition.
事实上,以这种方式思考是间隔重复记忆系统经常对个人失败的原因之一。我们经常会遇到这样的人,他们会说:"哦,我觉得间隔重复听起来很不错,我试过Anki [*等],但对我来说不起作用"。稍微往下挖掘一下,就会发现这个人在使用他们的记忆系统的方式保证会失败。他们会写出可怕的题,或者用它来学习一个他们不关心的题目,或者犯一些其他错误。他们有点像一个人认为 "学吉他听起来很好听 "的人,拿起吉他弹了半个小时,然后放下,说自己的声音很难听,所以是一种不好的乐器。当然,真正的情况是,吉他和记忆系统都是需要时间来培养的技能。但是,话虽如此,我们希望尽可能多地将支持建立在媒介上。理想的情况下,即使是新手也能从记忆媒介中受益匪浅。这意味着要建立许多超越间隔重复的简单模式的想法。
One of us has previously asserted that in spaced-repetition memory systems, users need to make their own cards. The reasoning is informal: users often report dissatisfaction and poor results when working with cards made by others. The reason seems to be that making the cards is itself an important act of understanding, and helps with committing material to memory. When users work with cards made by others, they lose those benefits.
我们中有人曾断言,在间隔重复记忆系统中,用户需要自己制作卡片。其理由是非正式的:用户在使用他人制作的卡片时,经常报告说不满意,效果不好。原因似乎是,制作卡片本身就是一种重要的理解行为,有助于将材料投入到记忆中。当用户在使用他人制作的卡片工作时,会失去这些好处。
Quantum Country violates this principle, since users are not making the cards. This violation was a major concern when we began working on Quantum Country. However, preliminary user feedback suggests it has worked out adequately. A possible explanation is that, as noted above, making good cards is a difficult skill to master, and so what users lose by not making their own cards is made up by using what are likely to be much higher-quality cards than they could have made on their own. In future, it’s worth digging deeper into this issue, both to understand it beyond informal models, and to explore ways of getting the benefits of active card making.
量子国违反了这个原则,因为用户并不是在制作卡片。当我们开始开发Quantum Country时,这个违反原则的问题是我们的主要担忧。然而,初步的用户反馈表明,它的效果很好。一个可能的解释是,如上所述,制作好的卡牌是一项很难掌握的技能,所以用户不制作自己的卡牌所失去的东西,通过使用可能比自己制作的卡牌质量高得多的卡牌来弥补。在今后的工作中,我们值得深入挖掘这个问题,既要超越非正式的模式去理解它,又要探索主动制卡的好处。
Above we discussed three principles of good question-and-answer construction. Of course, it’s also possible to make more structural modifications to the nature of the cards themselves. Here’s three questions suggesting experiments in this vein:
上面我们讨论了好的问答式结构的三个原则。当然,也可以对卡片本身的性质进行更多的结构性修改。下面是三个问题建议实验,在此基础上进行实验。
- How can we ensure users don’t just learn surface features of questions? One question in Quantum Country asks: “Who has made progress on using quantum computers to simulate quantum field theory?” with the answer: “John Preskill and his collaborators”. This is the only “Who…?” question in the entire essay, and many users quickly learn to recognize it from just the “Who…?” pattern, and parrot the answer without engaging deeply with the question. This is a common failure mode in memory systems, and it’s deadly to understanding. One response, which we plan to trial soon, is to present the question in multiple different-but-equivalent forms. So the user first sees the question as “Who has made progress [etc]?”; but then the second time the question is presented as a fill-in-the-blanks: “___ and his collaborators have made progress on using quantum computers to simulate quantum field theory.” And so on, multiple different forms of the question, designed so the user must always engage deeply with the meaning of the question, not its superficial appearance. Ultimately, we’d like to develop a library of techniques for identifying when this learning-the-surface-feature pattern is occurring, and for remedying it.
- 如何保证用户不只是学习问题的表面特征?量子国中的一个问题问道。"是谁在使用量子计算机模拟量子场理论方面取得了进展?"答案是:"约翰-普雷斯基尔和他的合作者 "John Preskill和他的合作者"。这是整篇文章中唯一一个 "谁...........?"的问题,很多用户很快就从 "谁..........?"的模式中学会了识别,并鹦鹉学舌地回答,而没有深入地参与到问题中去。这是记忆系统中常见的失败模式,对理解来说是致命的。有一种应对方式,我们计划在不久后进行试验,那就是将问题以多种不同但等同的形式呈现出来。这样,用户第一次看到的问题是 "谁取得了进展[*等]?";但第二次看到的问题是以填空的形式呈现。"______和他的合作者在利用量子计算机模拟量子场论方面取得了进展。" 以此类推,多个不同形式的问题,设计出来的问题,让用户始终要深度参与到问题的意义中去,而不是表面的表象。最终,我们希望开发出一个技术库,用于识别这种学习-表象-特征模式何时出现,并对其进行补救。
- How to best help users when they forget the answer to a question? Suppose a user can’t remember the answer to the question: “Who was the second President of the United States?” Perhaps they think it’s Thomas Jefferson, and are surprised to learn it’s John Adams. In a typical spaced-repetition memory system this would be dealt with by decreasing the time interval until the question is reviewed again. But it may be more effective to follow up with questions designed to help the user understand some of the surrounding context. E.g.: “Who was George Washington’s Vice President?” (A: “John Adams”). Indeed, there could be a whole series of followup questions, all designed to help better encode the answer to the initial question in memory.
- 当用户忘记了问题的答案时,怎样才能更好地帮助用户?"谁是美国第二任总统?" 也许他们以为是托马斯-杰弗逊,却惊讶地发现是约翰-亚当斯。在一个典型的间隔重复记忆系统中,这种情况可以通过减少时间间隔来处理,直到问题再次被复习。但是,用问题来帮助用户理解周围的一些背景知识可能更有效。例如:"谁是乔治-华盛顿的副手?"谁是乔治-华盛顿的副总统?" 答:"约翰-亚当斯")。事实上,可以有一连串的后续问题,都是为了帮助记忆中更好地编码最初问题的答案。
- How to encode stories in the mnemonic medium? People often find certain ideas most compelling in story form. Here’s a short, fun example: did you know that Steve Jobs actively opposed the development of the App Store in the early days of the iPhone? It was instead championed by another executive at Apple, Scott Forstall. Such a story carries a force not carried by declarative facts alone. It’s one thing to know in the abstract that even the visionaries behind new technologies often fail to see many of their uses. It’s quite another to hear of Steve Jobs arguing with Scott Forstall against what is today a major use of a technology Jobs is credited with inventing. Can the mnemonic medium be used to help people internalize such stories? To do so would likely violate the principle of atomicity, since good stories are rarely atomic (though this particular example comes close). Nonetheless, the benefits of such stories seem well worth violating atomicity, if they can be encoded in the cards effectively.
- 如何将故事以记忆体为媒介进行编码?人们往往觉得某些想法以故事的形式最能吸引人。这里有一个简短而有趣的例子:你知道在iPhone的早期,史蒂夫-乔布斯积极反对开发App Store吗?相反,它是由苹果公司的另一位高管斯科特-福斯特尔(Scott Forstall)支持的。这样的故事所蕴含的力量,不是单单靠声明性的事实就能承载的。抽象地知道,即使是新技术背后的远见卓识者也往往看不到新技术的许多用途,这是一回事。而听到史蒂夫-乔布斯与斯科特-福斯特尔(Scott Forstall)争论,反对乔布斯发明的一项技术的主要用途,则是另一回事。能否利用记事媒介帮助人们内化这样的故事?这样做很可能会违反原子性原则,因为好的故事很少是原子性的(尽管这个特殊的例子很接近)。尽管如此,如果能有效地将这些故事编码到卡片中,那么这些故事的好处似乎是非常值得违反原子性原则的。
It’s easy to generate dozens more questions and ideas in a similar vein. The mnemonic medium is not a fixed form, but rather a platform for experimentation and continued improvement.
很容易产生几十个类似的问题和想法。符号学的媒介不是固定的形式,而是一个实验和不断完善的平台。
One useful metaphor for thinking about how to improve the mnemonic medium is to think of each mnemonic essay as a conventional essay accompanied by a kind of “reflected essay” – the knowledge encoded by all the cards. A user can, with ease, choose to remember as much of that reflected essay as they wish. Of course, the reflection is imperfect. But by developing good card-making strategies we can make the reflected essay a nearly faithful reflection of all the important ideas, the ideas a reader would ideally like to retain.
思考如何改进记忆媒介的一个有用的比喻是,把每一篇记忆作文看成是一篇传统的作文,并伴随着一种 "反思作文"--所有卡片所编码的知识。用户可以根据自己的意愿,轻松地选择记忆那篇反映的作文,并能记住尽可能多的内容。当然,这种反思是不完美的。但是,通过制定良好的卡片制作策略,我们可以使反映出来的文章近乎忠实地反映出所有重要的思想,也就是读者最想保留的思想。
We said above that it’s a mistake to use the simplistic model “good memory system = spaced repetition”. In fact, while spaced repetition is a helpful way to introduce Quantum Country, we certainly shouldn’t pigeonhole the mnemonic medium inside the paradigm of existing SRM systems. Instead, it’s better to go back to first principles, and to ask questions like: what would make Quantum Country a good memory system? Are there other powerful principles about memory which we could we build into the system, apart from spaced repetition?
我们在上面说过,用 "好的记忆系统=间隔重复 "这种简单化的模式是错误的。事实上,虽然间隔重复是引入量子国的一种有用的方法,但我们当然不应该把记忆介质塞进现有的SRM系统的范式里面。相反,我们最好回到第一原则,并提出这样的问题:什么会使量子国成为一个好的记忆系统?除了间隔重复之外,我们是否还有其他关于记忆的强大原则,我们可以将其构建到系统中?
In fact, there are ideas about memory very different from spaced repetition, but of comparable power. One such idea is elaborative encoding. Roughly speaking, this is the idea that the richer the associations we have to a concept, the better we will remember it. As a consequence, we can improve our memory by enriching that network of associations.
事实上,有一些关于记忆的想法与间隔重复的想法非常不同,但威力相当。这类想法之一就是精心设计的编码法。粗略地说,这是一种想法,即我们对一个概念的联想越丰富,我们就越能记住它。因此,我们可以通过丰富这种联想网络来提高我们的记忆力。
This is in some sense an obvious idea, according well with everyday experience. For instance, it’s part of the reason it’s so much easier to learn new facts in an area we’re already expert in – we quickly form associations to our existing knowledge. But just because the idea is obvious, that doesn’t mean it’s particularly well supported by existing media forms. There’s a lot of low-hanging fruit which we can actively support inside the mnemonic medium. Indeed, several of the suggestions above already implicitly build on the idea of elaborative encoding – principles like “avoid orphan cards” are based on this. Here’s three more suggestions which build on elaborative encoding:
从某种意义上说,这是一个很明显的想法,也符合日常经验。例如,这也是我们在一个已经是专家的领域里学习新的事实要容易得多的部分原因--我们很快就会形成对现有知识的联想。但仅仅因为这个想法是显而易见的,并不意味着它得到了现有媒体形式的特别好的支持。有很多低悬的果实,我们可以在记忆体媒介内部积极支持。事实上,上面的几个建议已经隐约地建立在精心设计的编码理念上--像 "避免无主牌 "这样的原则就是基于此。下面再给大家介绍三个建立在阐述式编码基础上的建议。
- Provide questions and answers in multiple forms: In 1971, the psychologist Allan Paivio proposed the dual-coding theory, namely, the assertion that verbal and non-verbal information are stored separately in long-term memory. Paivio and others investigated the picture superiority effect, demonstrating that pictures and words together are often recalled substantially better than words alone. This suggests, for instance, that the question “Who was George Washington’s Vice President?” may have a higher recall rate if accompanied by a picture of Washington, or if the answer (John Adams) is accompanied by a picture of Adams. For memory systems the dual-coding theory and picture superiority effect suggest many questions and ideas. How much benefit is there in presenting questions and answer in multiple forms? Perhaps even with multiple pictures, or in audio or video (perhaps with multiple speakers of different genders, different accents, etc), or in computer code? Perhaps in a form that demands some form of interaction? And in each case: what works best?
- 以多种形式提供问题和答案。1971年,心理学家艾伦-佩维奥提出了双重编码理论,即言语信息和非言语信息在长期记忆中分开存储的论断。Paivio等人研究了图片优势效应,证明图片和文字结合在一起,往往比单独的文字记忆效果要好得多。这表明,例如,"谁是乔治-华盛顿的副总统?"这个问题如果配上华盛顿的图片,或者答案(约翰-亚当斯)配上亚当斯的图片,可能会有更高的记忆率。对于记忆系统来说,双编码理论和图片优势效应提出了很多问题和想法。以多种形式呈现问题和答案有多大的好处?也许甚至可以用多种图片,或者用音频或视频(也许用不同性别、不同口音等的多人说话),或者用计算机代码?也许是以需要某种形式的互动形式?而在每一种情况下:哪种形式最有效?
- Vary the context: In 1978, the psychologists Steven Smith, Arthur Glenberg, and Robert Bjork reported several experiments studying the effect of place on human memory. In one of their experiments, they found that studying material in two different places, instead of twice in the same place, provided a 40% improvement in later recall. This is part of a broader pattern of experiments showing that varying the context of review promotes memory. We can use memory systems to support things like: changing the location of review; changing the time of day of review; changing the background sound, or lack thereof, while reviewing. In each case, experiments have been done suggesting an impact on recall. It’s not necessarily clear how robust the results are, or how reproducible – it’s possible some (or all) are the results of other effects, uncontrolled in the original experiment. Still, it seems worth building systems to test and (if possible) improve on these results.
- 变化的语境。1978年,心理学家史蒂文-史密斯、阿瑟-格伦伯格和罗伯特-比约克报告了几个研究场所对人类记忆的影响的实验。在他们的一个实验中,他们发现,在两个不同的地方学习材料,而不是在同一个地方学习两次,在以后的记忆力上有40%的提高。这是一个更广泛的实验模式的一部分,这些实验表明,改变复习的语境可以促进记忆。我们可以利用记忆系统来支持一些事情,比如:改变复习的地点;改变复习的时间;改变复习时的背景声音,或者说改变背景声音的缺乏。在每一种情况下,都有实验表明对回忆有影响。现在还不一定清楚这些结果的稳健性如何,或者可重现性如何--有可能有些(或全部)是其他效应的结果,在原始实验中不受控制。尽管如此,似乎还是值得建立系统来测试和(如果可能的话)改进这些结果。
- How do the cards interact with one another? What is the ideal network structure of knowledge? This is a very complicated and somewhat subtle set of questions. Let’s give a simple example to illustrate the idea. We’ve presented the cards in the mnemonic medium as though they are standalone entities. But there are connections between the cards. Suppose you have cards: “Who was George Washington’s Vice President?” (Answer: “John Adams”, with a picture of Adams); “What did John Adams look like?” (Answer: a picture of Adams); perhaps a question involving a sketch of Adams and Washington together at some key moment; and so on. Now, this set of cards forms a network of interrelated cards. And you can use a memory system like Quantum Country to study that network. What happens to people’s observed recall if you remove a card? Are there crucial lynchpin cards? Are there particularly effective network structures? Particularly effective types of relationship between cards? Crucially: are there general principles we can identify about finding the deepest, most powerful ways of representing knowledge in this system?
- 卡片之间是如何相互作用的?理想的知识网络结构是什么?这是一组非常复杂且有些微妙的问题。让我们举一个简单的例子来说明这个问题。我们在记忆介质中呈现的卡片,好像它们是独立的实体。但这些卡片之间是有联系的。假设你有卡片。"谁是乔治-华盛顿的副总统?" 答案:"约翰-亚当斯",并配上亚当斯的照片);"约翰-亚当斯长什么样?" 答案:一张亚当斯的照片);也许是一个问题,涉及到亚当斯和华盛顿在某个关键时刻一起的素描;等等。现在,这组卡片组成了一个相互关联的网络。而你可以用量子国这样的记忆系统来研究这个网络。如果你删除了一张卡片,人们的观察到的记忆会发生什么?是否有关键的喉舌卡?是否有特别有效的网络结构?特别有效的卡牌之间的关系类型?最关键的是:关于在这个系统中找到最深层、最有力的知识表示方式,我们是否有一般的原则可以确定?
By now it’s obvious that the prototype mnemonic medium we’ve developed is the tip of a much larger iceberg. What’s more, the suggestions we’ve made and questions we’ve asked here are also merely a beginning, to give you the flavor of what is possible.
现在,很明显,我们开发的原型记忆介质只是一个更大的冰山一角。更重要的是,我们在这里提出的建议和问题也只是一个开始,让你了解到可能发生的事情。
Two cheers for mnemonic techniques | 为记忆技巧欢呼两声
When we discuss memory systems with people, many immediately respond that we should look into mnemonic techniques. This is an approach to memory systems very different to Quantum Country, Duolingo, Anki, and the other systems we’ve discussed. You’re perhaps familiar with simple mnemonic techniques from school. One common form is tricks such as remembering the colors of the rainbow as the name Roy G. Biv (red, orange, yellow, green, etc). Or remembering the periodic table of elements using a song.
当我们与人讨论记忆系统时,很多人立刻反应说,我们应该研究一下记忆技术。这个方法和我们讨论过的量子国、Duolingo、Anki以及其他的记忆系统非常不同。也许你在学校里对简单的记忆技巧很熟悉。一种常见的形式是技巧,比如把彩虹的颜色记成Roy G. Biv的名字(红色、橙色、黄色、绿色等)。或者用歌谣记住元素周期表。
A more complex variation is visualization techniques such as the method of loci. Suppose you want to remember your shopping list. To do so using the method of loci, you visualize yourself in some familiar location – say, your childhood home. And then you visualize yourself walking from room to room, placing an item from your shopping list prominently in each room. When you go shopping, you can recall the list by imagining yourself walking through the house – your so-called memory palace – and looking at the items in each room.
更复杂的变体是可视化技术,比如说可视化的方法,比如说位点的方法。假设你想记住你的购物清单。要使用地点法,你可以把自己想象成在某个熟悉的地方--比如说,你童年的家。然后你想象自己从一个房间走到另一个房间,在每个房间的显著位置放上购物清单上的物品。当你去购物的时候,你可以通过想象自己走过这个房子--你所谓的记忆宫殿--再看看每个房间里的物品,来回忆起清单。
If you’ve never used memory palaces this sounds like it couldn’t possibly work. But even novices are often shocked by how well such techniques work, with just a small amount of practice. Experts who work hard developing these techniques can do remarkable things, like memorizing the order of a shuffled deck of cards, or lists of hundreds of digits. It’s a way of using people’s immensely powerful visual and spatial memories as a form of leverage for other types of memory A small minority of the population does not possess a mind’s eye, and so cannot mentally visualize. This condition is known as aphantasia. One of us asked on Twitter if any aphantasics had tried using the method of loci, and if so how well it worked for them. The replies were remarkably heterogeneous (and striking), but most said such mnemonic techniques did not work for them. This deserves further study..
如果你从未使用过记忆宫,这听起来似乎不可能奏效。但是,即使是新手也常常会被这种技巧的效果所震惊,只需少量的练习就能成功。那些努力开发这些技巧的专家们可以做一些了不起的事情,比如说记住一副洗好的牌的顺序,或者是几百个数字的列表。这是一种利用人的强大的视觉和空间记忆作为其他类型记忆的杠杆的方式,少数人不具备心智眼,所以不能在精神上进行视觉化。这种情况被称为 "幻觉症"。我们中的一个人在推特上问,是否有象牙症患者曾尝试过使用过基因位点的方法,如果有的话,对他们的效果如何。答复是惊人的异质性(和惊人的),但大多数人说,这样的记忆技术对他们没有工作。这值得进一步研究。
Given all this, it’s perhaps not surprising that we often meet people who tell us that mnemonic techniques are a much more promising approach to memory than ideas such as spaced repetition.
鉴于这一切,也许我们经常会遇到一些人告诉我们,与间隔重复等想法相比,记忆技术是一种更有前途的记忆方法,这也许并不奇怪。
We’re enthusiastic about such mnemonic techniques. But it’s important to understand their limitations, and not be bedazzled by the impressiveness of someone who can rapidly memorize a deck of cards.
我们热衷于这样的记忆技巧。但要了解它们的局限性,不要被那些能快速背出一副牌的人的印象所迷惑。
One caution concerns the range of what can be memorized using mnemonic techniques. In practice they’re often quite specialized. Mnemonic experts will, for instance, use somewhat different approaches to memorize lists of digits versus decks of cards. Those approaches must be mastered separately – a heavy time investment for two narrow kinds of memory. Furthermore, the mnemonic techniques tend to be much better suited for concrete objects than abstract conceptual knowledge – it’s difficult to store, say, the main points in the Treaty of Versailles in your memory palace. This doesn’t mean it can’t be done – mnemonic experts have developed clever techniques for converting abstract conceptual knowledge into concrete objects which can be stored in a memory palace. But, in general, an advantage of spaced repetition is that it works across a far broader range of knowledge than do any of the mnemonic techniques.
有一点需要注意的是,使用记忆技巧可以记忆的范围。在实践中,它们往往是相当专业的。比如说,记忆专家会用不同的方法来记忆数字列表和扑克牌。这些方法必须分别掌握----对于两种狭义的记忆方法来说,这是一种沉重的时间投入。此外,记忆技巧往往比抽象的概念性知识更适合于具体的对象----比方说,你很难把《凡尔赛条约》中的要点储存在你的记忆宫殿里。这并不意味着不能做到--记忆专家们已经开发出了巧妙的技巧,将抽象的概念性知识转化为具体的对象,可以存储在记忆宫殿中。但总的来说,间隔重复的一个优点是,它的作用范围比任何一种记忆技术都要广泛得多。
A second caution relates to elaborative encoding. The mnemonic techniques are, as you have likely realized, an example of elaborative encoding in action, connecting the things we want to memorize (say, our shopping list) to something which already has meaning for us (say, our memory palace). By contrast, when an expert learns new information in their field, they don’t make up artificial connections to their memory palace. Instead, they find meaningful connections to what they already know. Those connections are themselves useful expertise; they’re building out a dense network of understanding. It’s a deeper and more desirable kind of expertise, connections native to the subject itself, not artificially constructed mnemonics.
第二点要注意的是精心设计的编码。正如你可能已经意识到的那样,记忆技巧是精心设计的编码的一个例子,它将我们想记住的东西(比如说,我们的购物清单)和对我们来说已经有意义的东西(比如说,我们的记忆宫殿)连接起来。相比之下,当一个专家在他们的领域学习新信息时,他们不会人为地将记忆宫与他们的记忆宫联系起来。相反,他们会找到与他们已经知道的东西有意义的联系。这些连接本身就是有用的专业知识;他们正在构建出一个密集的理解网络。这是一种更深层次的、更令人向往的专业知识,是原生于学科本身的连接,而不是人为构建的记忆宫。
All this makes us seem negative about mnemonic techniques. In fact, we’re enthusiastic, and have to date certainly underused them in the mnemonic medium. What we’ve written here is merely meant to temper the over-enthusiasm we sometimes encounter. We’ve had people go so far as to tell us that mnemonics make memory a solved problem. That is simply false. But with their limitations understood, they’re a powerful tool. This is particularly true for knowledge which has an arbitrary, ad hoc structure. For example, it’s difficult to remember the colors of the rainbow because those colors are not obviously connected to anything else, unless you happen to have the spectrum of visible light memorized for other reasons! That makes a mnemonic like Roy G. Biv extremely helpful. And so mnemonic techniques should be thought of as a useful tool to use in building powerful memory systems, especially when combined with ideas such as spaced repetition.
这一切都让我们似乎对记忆技巧持否定态度。事实上,我们是热衷于,到目前为止,我们在记事技巧中肯定是用得不足的。我们在这里所写的,只是为了缓和我们有时会遇到的过度热情。我们曾经有人说过,记忆法让记忆力成为了解决问题的方法,这完全是错误的。这完全是错误的。但是,只要理解了它们的局限性,它们就是一个强大的工具。这对于那些具有任意的、临时结构的知识来说尤其如此。例如,要记住彩虹的颜色是很难的,因为这些颜色和其他的东西没有明显的联系,除非你碰巧因为其他原因记住了可见光的光谱!这就很难记住彩虹的颜色。这使得像罗伊-G-比夫这样的记忆技巧非常有帮助。所以记忆技巧应该被认为是建立强大的记忆系统的有用工具,尤其是在与间隔重复等思想相结合的时候。
How important is memory, anyway? | 记忆力到底有多重要?
People tend to fall into two buckets when told of the mnemonic medium. One group is fascinated by the idea, and wants to try it out. The second group is skeptical or even repulsed. In caricature, they say: “Why should I care about memory? I want deeper kinds of understanding! Can’t I just look stuff up on the internet? I want creativity! I want conceptual understanding! I want to know how to solve important problems! Only dull, detail-obsessed grinds focus on rote memory.”
当人们在听说了助记介质的时候,往往会落入两个桶里。一类人对这个想法很着迷,想尝试一下。第二种人则持怀疑态度,甚至是排斥。他们用漫画的方式说:"我为什么要关心记忆?"我为什么要关心记忆?我想要的是更深层次的理解! 我不可以在网上查资料吗? 我想要的是创造力! 我想要概念性的理解! 我想知道如何解决重要的问题!
It’s worth thinking hard about such objections. To develop the best possible memory system we need to understand and address the underlying concerns. In part, this means digging down far enough to identify the mistaken or superficial parts of these concerns. It also means distilling as sharply as possible the truth in the concerns. Doing both will help us improve and go beyond the current prototype mnemonic medium.
对于这样的反对意见,值得我们认真思考。为了开发出最好的记忆系统,我们需要理解并解决这些潜在的担忧。在某种程度上,这意味着要深入挖掘,找出这些顾虑中错误的或表面的部分。这也意味着要尽可能尖锐地提炼出顾虑中的真相。做到这两点,将有助于我们改进和超越目前的原型符号学媒介。
One response to such objections is the argument from lived experience. In the past, one of us (MN) has often helped students learn technical subjects such as quantum mechanics. He noticed that people often think they’re getting stuck on esoteric, complex issues. But, as suggested in the introduction to this essay, often what’s really going on is that they’re having a hard time with basic notation and terminology. It’s difficult to understand quantum mechanics when you’re unclear about every third word or piece of notation. Every sentence is a struggle.
对这种反对意见的一种回应是来自生活经验的论证。过去,我们中的一位(MN)经常帮助学生学习量子力学等技术学科。他注意到,人们经常会认为自己在深奥复杂的问题上被卡住了。但是,正如这篇文章的导言中所建议的那样,往往真正的情况是,他们在基本的符号和术语方面遇到了困难。当你对每一个三分之一的单词或每一个记号法都不清楚的时候,你很难理解量子力学。每一句话都很纠结。
It’s like they’re trying to compose a beautiful sonnet in French, but only know 200 words of French. They’re frustrated and think the trouble is the difficulty of finding a good theme, striking sentiments and images, and so on. But really the issue is that they have only 200 words with which to compose.
就像他们想用法语写一首优美的十四行诗,却只知道200个字的法语。他们很苦恼,认为麻烦的是找不到一个好的主题、醒目的情感和形象等等。但真正的问题是,他们只有200个字的法语作文。
At the time, MN’s somewhat self-satisfied belief was that if people only focused more on remembering the basics, and worried less about the “difficult” high-level issues, they’d find the high-level issues took care of themselves. What he didn’t realize is that this also applied to him. When he began using the memory system Anki to read papers in new fields, he found it almost unsettling how much easier Anki made learning the basics of such subjects. And it made him start wondering if memory was often a binding constraint in learning new fields See here and here for more on learning new fields using Anki. The last four paragraphs are adapted from Augmenting Long-term Memory (2018)..
当时,MN有点自以为是地认为,如果人们只需把注意力更多地集中在记住基础知识上,少担心一些 "困难 "的高层次问题,就会发现高层次的问题会自己解决。但他没有意识到的是,这也适用于他。当他开始用安琪的记忆系统看新领域的论文时,他发现安琪对这类基础知识的学习,几乎是不以为然的,因为他发现安琪的记忆系统让他学习这类学科的基础知识变得轻松了许多。而且,这让他开始怀疑,在学习新领域的时候,记忆是否常常是一个约束性的制约因素 请看这里和这里,更多关于使用Anki学习新领域的内容。最后四段改编自【增强长期记忆】(http://augmentingcognition.com/ltm.html)(2018).....
One particularly common negative response to the mnemonic medium is that people don’t want to remember “unimportant details”, and are just looking for “a broad, conceptual understanding”. It’s difficult to know what to make of this argument. Bluntly, it seems likely that such people are fooling themselves, confusing a sense of enjoyment with any sort of durable understanding.
人们对记忆媒介的一个特别常见的负面反应是,人们不想记住 "不重要的细节",只求 "广义的、概念性的理解"。对于这种说法,我们很难知道该如何理解。直截了当地说,这样的人似乎很可能是在自欺其人,把享受感与任何一种持久的理解混淆在一起。
Imagine meeting a person who told you they “had a broad conceptual understanding” of how to speak French, but it turned out they didn’t know the meaning of “bonjour”, “au revoir”, or “tres bien”. You’d think their claim to have a broad conceptual understanding of French was hilarious. If you want to understand a subject in any real sense you need to know the details of the fundamentals. What’s more, that means not just knowing them immediately after reading. It means internalizing them for the long termThe last two paragraphs are adapted from our forthcoming mnemonic essay: Andy Matuschak and Michael Nielsen, How quantum teleportation works (2019)..
想象一下,如果遇到一个人告诉你,他们对如何说法语有 "广泛的概念性理解",但事实证明他们不知道 "bonjour"、"au revoir "或 "tres bien "的意思。你会觉得他们自称对法语有广泛的概念性理解是很搞笑的。如果你想真正理解一个主题,你需要知道基本的细节。更重要的是,这意味着不只是在读完书后立即了解它们。最后两段改编自我们即将出版的《记忆力作文》。Andy Matuschak和Michael Nielsen,量子传输是如何工作的(2019年)。
A better model is that conceptual mastery is actually enabled by a mastery of details. One user of Quantum Country told us that she found the experience of reading unexpectedly relaxing, because she “no longer had to worry” about whether she would remember the content. She simply trusted that the medium itself would ensure that she did. And she reported that she was instead able to spend more of her time on conceptual issues.
一个更好的模式是,概念的掌握实际上是通过对细节的掌握来实现的。一位 "量子国 "的用户告诉我们,她发现阅读的体验出乎意料地放松,因为她 "不必再担心 "自己是否能记住内容。她只是相信媒介本身会确保她能记住内容。她报告说,她反而能够把更多的时间花在概念问题上。
When people respond to the mnemonic medium with “why do you focus on all that boring memory stuff?”, they are missing the point. By largely automating away the problem of memory, the mnemonic medium makes it easier for people to spend more time focusing on other parts of learning, such as conceptual issues.
当人们以 "你为什么要把注意力放在那些无聊的记忆问题上? "来回应记忆媒介时,他们就错了。通过在很大程度上将记忆的问题自动化了,记忆媒介让人们更容易将更多的时间放在学习的其他部分,比如概念问题上。
Another common argument against spaced repetition systems is that it’s better to rely on natural repetition. For instance, if you’re learning a programming language, the argument goes, you shouldn’t memorize every detail of that language. Instead, as you use the language in real projects you’ll naturally repeatedly use, and eventually commit to memory, those parts of the language most important to learn.
另一个反对间隔重复系统的常见论点是,最好是依靠自然重复。例如,如果你在学习一门编程语言,这个论点认为,你不应该死记硬背该语言的每一个细节。相反,当你在实际的项目中使用该语言时,你会自然而然地反复使用,并最终将该语言中最需要学习的那些部分投入到记忆中。
There are important partial truths in this. It is good to use what you’re learning as part of your creative projects. Indeed, an ideal memory system might help that happen, prompting you as you work, rather than in an artificial card-based environment. Furthermore, a common failure mode with memory systems is that people attempt to memorize things they’re unlikely to ever have any use for. For instance, it’s no good (but surprisingly common) for someone to memorize lots of details of a programming language they plan to use for just one small project. Or to memorize details “just in case” they ever need them. These patterns are mistakes.
这里面有重要的部分道理。把你所学的东西作为你的创作项目的一部分来使用是很好的。事实上,一个理想的记忆系统可能会帮助你实现这一点,在你工作的过程中提示你,而不是在一个基于卡片的人工环境中。此外,记忆系统的一个常见的失败模式是,人们试图去记忆他们不太可能用得上的东西。比如说,对于一个人来说,只为一个小项目而背诵大量的编程语言的细节是没有什么好处的(但令人惊讶的是,这很常见)。或者背诵细节,"以防万一",以备不时之需。这些模式都是错误的。
But the truths of the last paragraph also have limits. If you’re learning French, but don’t know any French speakers, then waiting for “natural opportunities” to speak just won’t work. And even if you do have (or create) opportunities to speak, it’s desirable to accelerate the awkward, uncomfortable early stages that form such a barrier to using the language.
但最后一段的道理也是有限度的。如果你正在学习法语,但不认识任何一个会说法语的人,那么等待 "自然而然的机会 "来说话就是行不通的。而且,即使你确实有(或创造了)说话的机会,也应该加快那些尴尬的、不舒服的早期阶段,形成这样的语言使用障碍。
It’s in this phase that memory systems shine. They can accelerate people through the awkward early stages of learning a subject. Ideally, they’ll support and enable work on creative projects. For this to work well takes good heuristics for what any given person should commit to memory; what is good for one person to memorize may be bad for another. Working such heuristics out is an ongoing challenge in the design of memory systems.
正是在这个阶段,记忆系统大放异彩。它们可以加速人们度过学习一个科目的尴尬的早期阶段。最理想的情况是,它们可以支持和支持创造性项目的工作。要使其顺利运行,需要有良好的启发式学习方法来确定任何特定的人应该把什么东西投入到记忆中去;对一个人来说,记住的东西对另一个人来说可能是不好的。在记忆系统的设计中,如何设计出这样的启发式方法是一个持续的挑战。
(Incidentally, a surprising number of people say they are “repulsed”, or some similarly strong word, by spaced-repetition memory systems. Their line of argument is usually some variant on: it is claimed that spaced-repetition systems help with memory; if that is true I must use the systems; but I hate using the systems. The response is to deny the first step of the argument. Of course, the mistake is elsewhere: there is absolutely no reason anyone “should” use such systems, even if they help with memory. Someone who hates using them should simply choose not to do so. Using memory systems is not a moral imperative!)
(顺便说一下,有不少人说他们对间隔重复记忆系统 "排斥",或类似的强词夺理。他们的论点通常是这样的:有人声称间隔重复系统有助于记忆;如果这是真的,我必须*使用这些系统;但我讨厌使用这些系统。反应是否定论证的第一步。当然,错误就在别处:绝对没有理由让任何人 "应该 "使用这样的系统,即使它们对记忆力有帮助。讨厌使用它们的人,干脆选择不使用。使用记忆系统不是一种道德上的要求!)。)
An immense amount of research has been done on the relationship of memory to mastery. Much of this research is detailed and context specific. But at the level of broader conclusions, one especially interesting series of studies was done in the 1970s by Herbert Simon and his collaborators. They studied chess players, and discovered See, e.g., William G. Chase and Herbert A. Simon, Perception in Chess (1973). Some fascinating earlier work in a related vein was done by Adrian D. de Groot, and summarized in his book Thought and Choice in Chess (1965). that when master chess players look at a position in chess they don’t see it in terms of the individual pieces, a rook here, a pawn there. Instead, over years of playing and analyzing games the players learn to recognize somewhere between 25,000 and 100,000 patterns of chess pieces. These much more elaborate “chunks” are combinations of pieces that the players perceive as a unity, and are able to reason about at a higher level of abstraction than the individual pieces. At least in part it’s the ability to recognize and reason about these chunks which made their gameplay so much better than novices. Furthermore, although Simon did this work in the context of chess, subsequent studies have found similar results in other areas of expertise We’ve met many mathematicians and physicists who say that one reason they went into mathematics or physics is because they hated the rote memorization common in many subjects, and preferred subjects where it is possible to derive everything from scratch. But in conversation it quickly becomes evident that they have memorized an enormous number of concepts, connections, and facts in their discipline. It’s fascinating these people are so blind to the central role memory plays in their own thinking.. It seems plausible, though needs further study, that the mnemonic medium can help speed up the acquisition of such chunks, and so the acquisition of mastery.
关于记忆与掌握的关系,已经做了大量的研究。这些研究大多是详细的,而且是针对具体的背景的。但在更广泛的结论层面,有一个特别有趣的系列研究是由赫伯特-西蒙和他的合作者在20世纪70年代做的。他们对棋手进行了研究,并发现了见William G. Chase和Herbert A. Simon, Perception in Chess(1973年)。Adrian D. de Groot做了一些有趣的早期相关工作,并在他的《国际象棋中的思想与选择*》(1965年)一书中总结了这一点。相反,经过多年的下棋和分析,棋手们学会了识别大约25,000到100,000个棋子的模式。这些更复杂的 "大块 "是棋子的组合,棋手们认为这些棋子是一个整体,并且能够在比单个棋子更高的抽象层次上进行推理。至少从某种程度上来说,正是对这些 "块 "的认识和推理能力,使得他们的游戏性比新手要好得多。此外,虽然西蒙是在国际象棋的背景下做的这项工作,但随后的研究也发现类似的结果),在其他专业领域也有类似的结果 我们遇到过很多数学家和物理学家,他们说他们进入数学或物理的一个原因是,他们讨厌很多学科中常见的死记硬背,更喜欢从头开始推导出一切的学科。但在交谈中,很快就会发现,他们已经背了大量的概念、联系和事实,在他们的学科中,他们已经记住了大量的概念、联系和事实。这些人对记忆在他们自己的思维中的核心作用视而不见,真是令人着迷。虽然还需要进一步研究,但似乎是有道理的,因为记忆的媒介可以帮助加快这些大块的获取,从而加快掌握知识的速度。
So, does all this mean we’re fans of rote memory, the kind of forced memorization common schools?
Of course not. What we do believe is that many people’s dislike of rote memorization has led them to a generalized dislike of memory, and consequently to underrate the role it plays in cognition. Memory is, in fact, a central part of cognition. But the right response to this is not immense amounts of dreary rote memorization. Rather, it’s to use good tools and good judgment to memorize what truly matters.
那么,这一切是否意味着我们都是死记硬背的粉丝,也就是学校里常见的那种强迫性的死记硬背?
当然不是。我们认为的是,很多人不喜欢死记硬背,导致他们普遍不喜欢记忆,从而低估了记忆在认知中的作用。事实上,记忆是认知的核心部分。但是,正确的应对方法不是大量的沉闷的死记硬背,而是利用记忆力来完成。相反,是用好的工具和好的判断力去记忆真正重要的东西。
We’ve identified some ways in which criticisms of memory systems are mistaken or miss the point. But what about the ways in which those criticisms are insightful? What are the shortcomings of memory systems? In what ways should we be wary of them?
我们已经指出了一些对记忆系统的批评是错误的,或者说是误入歧途。但是,这些批评的方式有哪些是有见地的呢?存储器系统的缺点是什么?我们应该在哪些方面警惕它们呢?
We’ve already implicitly mentioned a few points in this vein. Think about problems like the need to avoid orphan questions. Or to make sure that users don’t merely learn surface features of questions. These are ways in which memory systems can fail, if used poorly. Here’s a few more key concerns about memory systems:
我们已经隐隐约提到了这个脉络中的几个点。思考一下问题,比如说要避免出现孤儿题。或者要确保用户不只是学习问题的表面特征。这些都是内存系统如果使用不好,可能会失败的方式。下面是关于内存系统的几个关键问题。
- Memory systems don’t make it easy to decide what to memorize: Most obviously, we meet a lot of people who use memory systems for poorly chosen purposes. The following is surprisingly close to a transcript of a conversation we’ve both had many times: It’s easy to poke fun at this kind of thing. But we’ve both done the equivalent in our own memory practices. Even some users of Quantum Country seem to be going through the motions out of some misplaced sense of duty. The question “what will be beneficial to memorize” is fundamental, and answering that question well is not trivial.
- 记忆系统并不容易决定记忆什么。最明显的是,我们会遇到很多人用记忆系统选择不好的目的。下面的内容出人意料地接近于我们两个人多次的谈话记录。 戳中这种事情很容易让人觉得好笑。但我们俩在自己的记忆实践中都做过这样的事。甚至有些量子国的用户,似乎也是出于某种错位的责任感而走过场。"背什么会有好处 "这个问题是根本,回答好这个问题并不是小事。
"我不喜欢【记忆系统】。我试过背非洲的国家,很无聊。" "你刚才为什么要记着非洲的国家?" [一脸茫然的表情。]
- What’s the real impact of the mnemonic medium on people’s cognition? How does it change people’s behavior? A famous boxer is supposed to have said that everyone has a plan until they get punched in the face. Regular users of memory systems sometimes report that while they can remembers answers when being tested by their system, that doesn’t mean they can recall them when they really need them. There can be a tip-of-the-tongue feeling of “Oh, I know this”, but not actual recall, much less the fluent facility one ultimately wants for effective action. Furthermore, the user may not even recognize opportunities to use what they have learned. More broadly: memory is not an end-goal in itself. It’s embedded in a larger context: things like creative problem-solving, problem-finding, and all the many ways there are of taking action in the world. We suspect the impact of memory systems will vary a lot, depending on their design. They may be used as crutches for people to lean on. Or they may be used to greatly enable people to develop other parts of their cognition. We don’t yet understand very well how to ensure they’re enablers, rather than crutches. But later in the essay we’ll describe some other tools for thought that, when integrated with memory systems, may better enable this transition to more effective action.
- 记忆介质对人们的认知有什么真正的影响?它又是如何改变人们的行为的呢?应该有一位著名的拳击手说过,每个人都有一个计划,直到被打脸为止。经常使用记忆系统的人有时会报告说,虽然他们在接受系统测试时能记住答案,但这并不意味着他们在真正需要答案的时候就能回忆起来。可能会有一种 "哦,我知道这个 "的舌尖上的感觉,但并不是实际的回忆,更不是最终想要的有效行动的流利设施。此外,使用者可能连使用他们所学的东西的机会都没有认识到。更广义地说:记忆本身并不是最终目的。它被嵌入到一个更大的背景中:像创造性地解决问题,寻找问题,以及世界上所有的许多行动方式。我们怀疑记忆系统的影响会有很大的变化,这取决于它们的设计。它们可能会被用来作为人们的拐杖,让人们依靠。或者它们可能会被用来极大地使人们的认知的其他部分得到发展。我们还不太了解如何确保它们是助推器,而不是拐杖。但在文章的后面,我们将描述一些其他的思维工具,当它们与记忆系统结合在一起时,可能会更好地使这种过渡到更有效的行动。
“I don’t like [memory system]. I tried to memorize the countries in Africa, and it was boring.” “Why were you trying to remember the countries in Africa?” [blank look of confusion.]
How to invent Hindu-Arabic numerals? | 如何发明印度语-阿拉伯数字数字?
Let’s briefly get away from memory systems. Imagine you’re a designer living in ancient Rome, working for MDC (Mathematical Designs Corporation). A client comes in one day, expressing a desire to improve on Roman numerals. Of course, that’s not literally how they describe their problem to you – more likely it’s a tax collector wanting to tabulate taxes more efficiently, and having some vague notion that MDC may be able to help. But to you, an experienced designer, it seems that an improved system of numerals may be what they need.
让我们简单地脱离记忆系统。假设你是一个生活在古罗马的设计师,为MDC(数学设计公司)工作。有一天,一个客户来了,表示希望改进罗马数字的设计。当然,这并不是他们向您描述他们的问题的字面意思--更有可能是一个税务员想更有效地计算税款,并隐隐约约地认为MDC也许能帮上忙。但对你这个有经验的设计者来说,似乎一个改进的数字系统可能是他们需要的。
How should you respond to this request? From our modern vantage point we know a vastly better system of numerals is possible, the Hindu-Arabic numerals. Hindu-Arabic numerals were, in fact, a great leap in the history of tools for thought. Could you, as a designer, have made that leap? What creative steps would be needed to invent Hindu-Arabic numerals, starting from the Roman numerals? Is there a creative practice in which such steps would be likely to occur?
你应该如何回应这个要求?从我们现代人的角度来看,我们知道有可能有一个更好的数字系统,那就是印度教-阿拉伯数字。事实上,印度教-阿拉伯数字是思想工具史上的一个巨大飞跃。作为设计者的你,能实现这一飞跃吗?从罗马数字开始,发明印度教-阿拉伯数字,需要什么样的创造性步骤?有没有可能出现这种步骤的创造性实践?
To be clear: this is a somewhat fanciful thought experiment. Many of the ideas needed to get to Hindu-Arabic numerals were, in fact, known earlier to the Babylonians, to the Greeks, and in other cultures. They were also inchoate in the abacus and similar devices. And so we’re not asking a literal historical question. Rather, it’s a question meant to stimulate thought: what design process could take you from Roman numerals to Hindu-Arabic numerals?
要明确的是:这是一个有些虚构的思想实验。事实上,印度教-阿拉伯数字所需要的许多思想,在巴比伦人、希腊人和其他文化中都很早就知道了。它们在算盘和类似的装置中也都有了。所以我们不是在问一个字面的历史问题。相反,这是一个旨在引发思考的问题:是什么设计过程能让你从罗马数字到印度阿拉伯数字?
We can’t know the answer to this question for sure. But it’s worth pointing out that the Hindu-Arabic numerals aren’t just an extraordinary piece of design. They’re also an extraordinary mathematical insight. They involve many non-obvious ideas, if all you know is Roman numerals. Perhaps most remarkably, the meaning of a numeral actually changes, depending on its position within a number. Also remarkable, consider that when we add the numbers 72 and 83 we at some point will likely use 2+3=5; similarly, when we add 27 and 38 we will also use 2+3=5, despite the fact that the meaning of 2 and 3 in the second sum is completely different than in the first sum. In modern user interface terms, the numerals have the same affordances, despite their meaning being very different in the two cases. We take this for granted, but this similarity in behavior is a consequence of deep facts about the number system: commutativity, associativity, and distributivityThe same phenomenon occurs in the conventional grade-school algorithms for multiplication and division. One of us has spun a short piece of discovery fiction discussing in more detail the way a hypothetical designer might have arrived at these ideas.. All these properties (and many more) point to the design and mathematical insights being inextricably entangled: the mathematical insights are, in some sense, design insights, and vice versa.
这个问题的答案我们无法确定。但值得指出的是,印度-阿拉伯数字不只是一个非凡的设计。它们也是一种非凡的数学见解。如果你只知道罗马数字的话,它们涉及到许多不明显的思想。也许最重要的是,一个数字的意义实际上会随着它在数字中的位置而改变。同样值得注意的是,当我们把72和83相加时,我们可能会在某个时候使用2+3=5;同样的,当我们把27和38相加时,我们也会使用2+3=5,尽管事实上,2和3在第二个和中的含义与第一个和中的含义完全不同。在现代的用户界面术语中,尽管这两个数字的含义在这两种情况下有很大的不同,但它们的负担能力是一样的。我们认为这是理所当然的,但这种行为上的相似性是关于数字系统的深层事实的结果:换向性、关联性和分布性。我们中的一个人在发现小说中写了一篇短篇的发现小说,更详细地讨论了一个假设的设计者可能得出这些想法的方式。所有这些特性(以及更多的特性)都表明设计和数学见解是不可分割地纠缠在一起的:在某种意义上,数学见解是设计的见解,反之亦然。
Indeed, it seems fair to say that any person who could invent Hindu-Arabic numerals, starting from the Roman numerals, would be both one of the great mathematical geniuses who ever lived, and one of the great design geniuses who ever lived. They’d have to be extraordinarily capable in both domains, capable of an insight-through-making loop which used the evolving system of numerals to improve not just their own mathematical ideas, but to have original, world-class insights into mathematics; and also to use those mathematical insights to improve their evolving system of numerals.
事实上,可以这么说,任何一个能从罗马数字开始发明印度-阿拉伯数字的人,都是有史以来最伟大的数学天才之一,也是最伟大的设计天才之一。他们必须在这两个领域都有超强的能力,能够利用不断发展的数字系统来完善自己的数学思想,并对数学有独创性的、世界一流的见解;同时也能利用这些数学见解来完善自己不断发展的数字系统。
This is rather sobering if we compare to conventional modern design practice. In a typical practice, you’d interview domain experts (in this case, mathematicians), and read any relevant literature. You’d talk to users of existing systems, and analyze serious behavior, both individually and at scale. In short, you’d do what people in the design community refer to as immersing themselves in the target field.
如果我们将其与传统的现代设计实践进行比较,这是相当令人唏嘘的。在一个典型的实践中,你会采访领域专家(在这里是数学家),并阅读任何相关的文献。你会与现有系统的用户交谈,并对用户的行为进行认真的分析,包括个别的和规模的分析。简而言之,你要做的就是设计界人士所说的沉浸在目标领域中。
This is a powerful practice. At its best it causes systems to come into existence which would otherwise be inconceivable. If applied to Roman numerals (in hypothetical ancient Rome, not todayOf course, a designer who spoke to an expert on, say, Babylonian mathematics, might well have come across some of these ideas. We’ll ignore that, since it depends on the oddity that many excellent prior ideas about numeral systems had been displaced in Roman culture.) this practice would likely improve them a great deal. But it would not provide anywhere near the level of mathematical insight needed to arrive at Hindu-Arabic numerals.
这是一种强大的做法。在最好的情况下,它使一些系统出现了,否则是不可想象的。如果应用到罗马数字上(在假设的古罗马,而不是今天的罗马,当然,一个设计者如果与巴比伦数学专家交谈,可能会发现其中的一些想法。我们将忽略不计,因为这取决于罗马文化中许多以前关于数字系统的优秀思想已经被罗马文化所取代,这种做法很可能会大大改善它们。但是,它所提供的数学洞察力远远达不到得出印度教-阿拉伯数字所需的水平。
Our story about Hindu-Arabic numerals and mathematics is fanciful. But it expresses a general truth: the most powerful tools for thought express deep insights into the underlying subject matter. In the case of memory systems, this means they’re not just “applied cognitive science”, a collage of existing ideas from cognitive science pasted together using modern design practice. Rather, they will express deep original insights into memory, insights no-one else in the world has ever had. A truly great memory system will be cognitive science of the highest order.
我们关于印度教-阿拉伯数字和数学的故事是虚构的。但它表达了一个普遍的真理: 在记忆系统方面,这意味着它们不仅仅是 "应用认知科学",是将认知科学中的现有思想用现代设计实践拼贴在一起。相反,它们将表达出对记忆的深刻的原创性见解,这是世界上没有人有过的见解。一个真正伟大的记忆系统将是最高级别的认知科学。
From this discussion, we take away a warning and an aspiration.
从这次讨论中,我们带走了一个警示和一个愿望。
The warning is this: conventional tech industry product practice will not produce deep enough subject matter insights to create transformative tools for thought. Indeed, that’s part of the reason there’s been so little progress from the tech industry on tools for thought. This sounds like a knock on conventional product practice, but it’s not. That practice has been astoundingly successful at its purpose: creating great businesses. But it’s also what Alan Kay has dubbed a pop culture, not a research culture. To build transformative tools for thought we need to go beyond that pop culture.
警告是这样的:传统的科技行业产品实践不会产生足够深刻的主题洞察力,无法创造出变革性的思维工具。事实上,这也是科技行业在思维工具方面进展甚微的部分原因。这听起来像是对传统产品实践的敲门砖,但事实并非如此。这种做法在其目的上取得了惊人的成功:创造伟大的企业。但这也是Alan Kay所称的流行文化,而不是研究文化。要建立变革性的思想工具,我们需要超越这种流行文化。
The aspiration is for any team serious about making transformative tools for thought. It’s to create a culture that combines the best parts of modern product practice with the best parts of the (very different) modern research culture.
这个愿望对于任何一个认真做思想改造工具的团队来说,都是一种愿望。它是为了创造一种文化,将现代产品实践的最佳部分与(非常不同的)现代研究文化的最佳部分结合在一起。
You need the insight-through-making loop to operate, whereby deep, original insights about the subject feed back to change and improve the system, and changes to the system result in deep, original insights about the subject.
你需要通过洞察力--制造循环来运作,通过这个循环,对主体的深刻的、原始的洞察力反哺到系统的改变和完善,而系统的改变又会导致对主体的深刻的、原始的洞察力。
Note that we are not making the common argument that making new tools can lead to new subject matter insights for the toolmaker, and vice versa. This is correct, but is much weaker than what we are saying. Rather: making new tools can lead to new subject matter insights for humanity as a whole (i.e., significant original research insights), and vice versa, and this would ideally be a rapidly-turning loop to develop the most transformative tools.
注意,我们并不是在说,做新的工具会给工具制造者带来新的题材见解,反之亦然。这种说法是正确的,但比我们所说的要弱得多。相反:制造新工具可以为 全人类带来新的主题性见解(即重大的原创性研究见解),反之亦然,这在理想情况下,将是一个快速转动的循环,开发出最具变革性的工具。
Doing this is a cultural struggle. It seems to be extraordinarily rare to find the insight-through-making loop working at full throttle. People with expertise on one side of the loop often have trouble perceiving (much less understanding and participating in) the nature of the work that goes on on the other side of the loop. You have researchers, brilliant in their domain, who think of making as something essentially trivial, “just a matter of implementation”. And you have makers who don’t understand research at all, who see it as merely a rather slow and dysfunctional (and unprofitable) making process. This is certainly true in Silicon Valley, where it’s common to meet accomplished technical makers who, after reading a few stories from Richard Hamming and Richard Feynman, think they understand research well enough that they can “create the new Bell Labs”. Usually they’re victims of Dunning-Krugeritis, so ignorant they’re not even aware of their ignorance.
做到这一点,是一种文化上的奋斗。 在循环的一端拥有专业知识的人往往难以感知(更不用说理解和参与)循环的另一端的工作性质。你有研究人员,他们在自己的领域里很出色,但他们认为制造是一件本质上微不足道的事情,"只是一个实施的问题"。而你也有一些根本不懂研究的制造者,他们把它看作是一个相当缓慢、功能失调(而且无利可图)的制造过程。在硅谷当然也是如此,在硅谷,我们经常会遇到一些有成就的技术制造者,他们在读了一些理查德-汉明和理查德-费曼的故事后,认为自己对研究的理解足够深刻,可以 "创造新的贝尔实验室"。通常他们是邓宁-克鲁格炎的受害者,无知到连自己的无知都不知道。
Of course, we’ve got a long way to go with Quantum Country. It’s not yet generating nearly deep enough ideas about memory and cognition; it’s not yet one of the world’s foremost memory laboratories. And considered as a product, it’s also in the very earliest days; we’re not yet iterating nearly fast enough, nor learning nearly fast enough from the system. Getting the insight-through-making loop to operate at full throttle will mean reinventing parts of both research culture and conventional product development culture; it will mean new norms and a new type of person involved in key decision making. But that’s the aspiration, and what we believe is necessary to develop transformative tools for thought.
当然,我们还有很长的路要走,量子国。它还没有产生近乎足够深刻的记忆和认知的想法;它还不是世界上最顶尖的记忆实验室之一。而且作为一个产品来考虑,它还处于最早期的阶段;我们的迭代速度还不够快,从系统中学习的速度也不够快。要让洞察力-穿越式制造循环全速运转,就意味着要重塑部分研究文化和传统产品开发文化;这意味着新的规范和新型的人参与关键决策。但这就是我们的愿望,也是我们认为开发变革性的思想工具所必须的。
We’ve examined the mnemonic medium in some depth. The intent was to show you the early stages in the development of a specific tool for thought, and some of the thinking enabled by that development. In this second part of the essay we explore more broadly, briefly sketching ideas for several other tools for thought. And we’ll address some broader questions, especially around why there hasn’t been more work on tools for thought.
我们已经深入研究了一下记忆体这个媒介。我们的意图是向大家展示一种特定的思维工具的早期发展阶段,以及这种发展所促成的一些思维。在这篇文章的第二部分,我们将进行更广泛的探讨,简要地勾勒出其他几种思维工具的想法。我们将讨论一些更广泛的问题,特别是围绕着为什么没有更多的思考工具的工作。
Mnemonic video | 记忆体视频
In 2014, the digital artist Eric Wernquist released an extraordinary short video entitled “Wanderers”. The video provides a first-person glimpse of what it would be like to explore the Solar System:
2014年,数字艺术家Eric Wernquist发布了一部名为"流浪者 "的非凡短视频。这段视频以第一人称的方式,让人看到了探索太阳系的情景。
We hear the narrator’s (Carl Sagan) wonder and awe, and cannot help but empathize with his deep belief in the value of exploration. We get a sense of how many mysteries and how much beauty there is in our own cosmic neighborhood. The music begins with a wistful nostalgia for those of our ancestors who dared to explore, and then changes to convey excitement and danger and the boldness of those members of our and future generations who continue that exploration.
我们听到叙述者(卡尔-萨根)的惊叹和敬畏,不禁对他对探索价值的深刻信念产生共鸣。我们可以感受到,在我们自己的宇宙中,有多少神秘的东西,有多少美。音乐一开始,我们对那些敢于探索的先辈们的怀念,然后转而传达出兴奋和危险,以及我们和后世的成员们继续探索的勇气。
It’s interesting to contrast the video to the video’s script, a short text by Carl Sagan. The text is beautiful, but reading it is a much more remote and cerebral experience, conveying a much less visceral emotional understanding.
对比一下视频中的剧本--卡尔-萨根的一篇短文,很有意思。文中的文字很美,但读起来却让人觉得很生疏,很脑洞大开,传达出的感性认识要少得多。
We have a friend, Grant Sanderson, who makes astonishing mathematics videos on his YouTube channel, 3Blue1Brown. Below is one of our favorites, a video sketching a proof of a relatively recent research result in geometry, using ideas from algebraic topology. This sounds fearsome, but the video is beautiful and accessible, and has been viewed more than 1.2 million times.
我们有一个朋友,格兰特-桑德森,他在他的YouTube频道3Blue1Brown上制作了一些令人惊叹的数学视频。下面是我们最喜欢的一个视频,这是一个利用代数拓扑学的思想,勾勒出了一个相对较新的几何学研究成果的证明。这听起来很可怕,但视频很美,很容易上手,观看次数超过120万次。
As with Wanderers, watching this video is a remarkable emotional experience. It’s obvious the person narrating the video loves mathematics, and you cannot help but empathize. As you watch, you experience repeated “Ahah!” moments, moments of surprising insight, as connections that were formerly invisible become obvious. It shows mathematics as something beautiful, containing extraordinary ideas and intriguing mysteries, while at the same time showing that doing mathematics is not mysterious, that it is something anyone can understand and even do.
和 Wanderers 一样,看这段视频也是一种非凡的情感体验。很明显,讲述这段视频的人很喜欢数学,你会忍不住产生共鸣。当你观看的时候,你会体验到反复的 "啊哈!"的时刻,惊喜的洞察力,以前看不见的联系变得明显。它显示出数学是一种美丽的东西,蕴含着非凡的思想和耐人寻味的奥秘,同时也显示出做数学并不神秘,它是任何人都可以理解甚至是做的。
It’s tempting to overlook or undervalue this kind of emotional connection to a subject. But it’s the foundation of all effective learning and of all effective action. And it is much easier to create such an emotional connection using video than using text.
我们很容易忽视或低估这种与主题的情感联系。但它是所有有效学习的基础,也是所有有效行动的基础。而使用视频比使用文字更容易建立这种情感联系。
There’s a flipside to this emotional connection, however. We’ve often heard people describe Sanderson’s videos as about “teaching mathematics”. But in conversation he’s told us he doesn’t think more than a small fraction of viewers are taking away much detailed understanding of mathematics. We suspect this is generally true, that high affect videos usually do little to change people’s detailed intellectual understanding. Rather, the extraordinary value of the videos lies in the emotional connection they create.
然而,这种情感上的联系也有其反面。我们经常听到有人把Sanderson的视频描述为 "教数学"。但在交谈中,他告诉我们,他不认为超过一小部分观众会带走多少对数学的详细理解。我们猜想,一般情况下,这种说法是对的,高影响的视频通常对改变人们的详细智力理解没有什么作用。相反,视频的非凡价值在于它们所产生的情感联系。
Is it possible to create a medium which blends the best qualities of both video and text?
有没有可能创造一种融合了视频和文字的最佳品质的媒介?
In particular, is it possible to create a medium which has the emotional range possible in video – a range which can be used to convey awe and mystery and surprise and beauty? But which can also firmly ground that emotional connection in detailed understanding, the mastery of details which is the raison d’être of both conventional text and, perhaps even moreso, of the mnemonic medium?
特别是,是否有可能创造出一种具有录像中可能的情感范围的媒介----一种可以用来传达敬畏、神秘、惊奇和美丽的范围?但它也可以将这种情感联系牢牢地扎根于细节的理解中,对细节的把握是传统文本存在的理由,而对细节的把握,也许更多的是对记忆媒介存在的理由?
We believe this may be possible, and we plan to develop a mnemonic video form that provides both the emotional connection possible in video, and the mastery of details possible in the mnemonic medium.
我们相信这可能是可能的,我们计划开发一种记忆性的视频形式,既能提供视频中可能的情感连接,又能掌握记忆性媒介中可能的细节。
Creating such a form is challenging. Many MOOC platforms have attempted something a little in this vein. The typical approach is to have a low-affect talking head video, with the videos interrupted occasionally for brief quizzes. Here’s how it works on one MOOC platform, Coursera:
创建这样的形式是有挑战性的。很多MOOC平台都尝试过这种形式。典型的做法是用一个低效果的说话头视频,视频中偶尔会有一些简短的问答。以下是一个MOOC平台Coursera的工作原理。
Other MOOCs differ in the details. But the overall emotional experience may be summed up as:
其他的MOOCs在细节上也有不同。但总体的情感体验可以概括为:
The very best parts of the video may be emotionally compelling, though it’s rare that they achieve the emotional range and connection of the best videos from people like Grant Sanderson. And the overall emotional experience is disjointed, almost repellent. Is it possible to create an integrated medium, with a unified and carefully crafted emotional and intellectual experience? Ideally, is it possible to create something like the following?
视频中最优秀的部分可能在情感上是引人入胜的,尽管它们很少能达到像格兰特-桑德森这样的人的情感范围和联系,但也很难得。而整体的情感体验是脱节的,几乎是排斥的。是否有可能创造出一个整合的媒介,在情感和思想上都有统一的、精心打造的情感体验?理想的情况下,是否有可能创造出像下面这样的东西?
In MOOCs, questions are typically presented in a very dry form, detached from context. In the mnemonic video the narrator would explain why the questions are important, and why the user will benefit from participating, as a seamless part of the overall narration. Done right – perhaps with appropriate music, and a sense of urgency or play in the narration – it would create a real sense of the stakes. At the same time, the video player can be modified so the user can respond directly to questions, as part of the spaced-repetition experience. The result would be much softer transitions between the high-affect core narration and the moderate-affect questions.
在MOOCs中,问题通常以非常枯燥的形式呈现,脱离了上下文。在记事视频中,叙述者会解释为什么这些问题是重要的,为什么用户会从参与中受益,作为整体叙述的一个无缝的部分。如果做的好--也许配上适当的音乐,以及叙述中的紧迫感或戏剧性--就会创造出一种真正的利害关系。同时,视频播放器也可以修改,让用户可以直接回答问题,作为间隔重复体验的一部分。这样做的结果是在高影响的核心叙述和中等影响的问题之间的过渡要柔和得多。
Here’s a short sketch of one approach to doing this, showing how the narrator could ask questions aloud as an integrated part of the overall narration:
下面是一个简短的草图,说明叙述者如何将问题作为整体叙述的一个组成部分,大声地提出问题。
It seems likely that the rhythm of mnemonic videos would be quite different to mnemonic essays. In particularly, the frequency and density of questions would be lower than in the mnemonic medium, and it would be necessary to test different beats and cadences to ensure a good balance of emotional and intellectual experience. Even high-affect video typically has quieter moments; it achieves the high affect in part by contrast to the lower-intensity moments. Think about the way a good action movie or thriller needs lulls; if it’s too high-intensity all the time, eventually our emotional response is dulled. We could design mnemonic video so the questions help fill this lower-intensity emotional beat.
记忆式视频的节奏似乎可能与记忆式作文有很大的不同。特别是,问题的频率和密度会比记忆式的文章低,而且有必要测试不同的节拍和节奏,以确保情感和知识经验的良好平衡。即使是高情感的视频,通常也会有比较安静的时刻,它在一定程度上通过与低强度时刻的对比来实现高情感。想想看,一部好的动作片或惊悚片都需要平缓,如果一直太过高强度,最终我们的情绪反应就会变得迟钝。我们可以设计一些记忆性的视频,让问题来填补这种低强度的情绪节拍。
Of course, this is merely a quick sketch of one approach to the design of mnemonic video. Ideally, there would also be a spaced-repetition component, perhaps with the questions asked in text instead of video. This sort of sketch seems to us a promising direction, but needs considerable development and intense testing. In particular, we need to do detailed, second-by-second user experience testing, to understand and shape users’ emotional and intellectual experience. That would continue until we were confident that our target users were having the desired experience. Ideally, we’d also generate several more very different designs, and try to understand how each approach would impact the user’s emotional and intellectual experience.
当然,这仅仅是对记忆型视频设计的一种方法的快速草图。最理想的情况是,还应该有一个间隔重复的部分,也许用文字代替视频提问。在我们看来,这样的草图似乎是一个很有前途的方向,但需要大量的开发和激烈的测试。特别是,我们需要做详细的、分秒必争的用户体验测试,以了解和塑造用户的情感和智力体验。这样的测试会一直持续下去,直到我们确信我们的目标用户获得了预期的体验。最理想的情况是,我们还将生成几个非常不同的设计,并尝试了解每种方法对用户的情感和智力体验的影响。
The broader point here is about taking emotion seriously. Historically, a lot of work on tools for thought has either ignored emotion, or treated it as no more than a secondary concern. Instead, that work has focused on new skills acquired, on what the user “learns”. They’ve been designing for Spock, when emotional connection is a high-order bit. Do users feel disinterested? Afraid? Hostile? Anxious? Or do they internalize a sense of excitement, of beauty, perhaps even an expansion in their own goals, an expansion of their self?
这里更广泛的意义是关于认真对待情感。从历史上看,很多关于思想工具的工作要么忽略了情感,要么将其视为次要的问题。相反,这些工作的重点在于新技能的获得,用户 "学习 "的内容。他们一直在为Spock设计,当情感连接是一个高阶位的时候。用户会不会觉得不感兴趣?害怕?敌意?焦虑?还是内化为一种兴奋感、美感,也许是对自己的目标、对自我的扩张?
By contrast, media forms such as movies and music and (often) video games do take emotion seriously. The designers of such forms often have incredibly elaborate models of user’s emotional responses. These models range from detailed, second-by-second understanding, to deep thinking about a user’s overall emotional journey. We believe it’s possible and desirable to use such approaches in the development of tools for thought.
相比之下,媒体形式,如电影和音乐以及(通常)视频游戏等媒体形式确实很重视情感。这类形式的设计者往往对用户的情感反应有非常精致的模型。这些模型从详细的、一秒一秒的理解,到对用户整体情感历程的深度思考。我们认为,在思维工具的开发中使用这样的方法是可行的,也是可取的。
At the same time, a positive emotional experience alone is not enough. For tools for thought to attain enduring power, the user must experience a real growth in mastery, an expansion in their ability to act. And so we’d like to take both the emotional and intellectual experience of tools for thought seriously. Mnemonic video is a good venue for such exploration. To paraphrase Einstein, attaining a detailed understanding without forming an emotional connection is lame; while forming an emotional connection without detailed understanding has no enduring power.
同时,仅有积极的情感体验是不够的。思想工具要想获得持久的力量,必须让使用者体验到真正的主宰力的成长,体验到行动能力的扩张。所以,我们要认真对待思维工具的情感体验和思维体验。Mnemonic视频就是这样的探索的好场所。套用爱因斯坦的话说,获得了详细的理解而没有形成情感上的联系,是蹩脚的;而形成情感上的联系而没有详细的理解,就没有持久的力量。
Why isn’t there more work on tools for thought today? | 为什么今天没有更多的思想工具方面的工作产生?
If tools for thought are so great, why isn’t more work being done on them? Why aren’t they a major industry?
既然思维工具这么好,为什么不在上面做更多的工作?为什么没有成为一个重要的产业?
As noted in the introduction, there’s certainly a lot of lip service paid. It is, for instance, common to hear technologists allude to Steve Jobs’s metaphor of computers as “bicycles for the mind”. But in practice it’s rarely more than lip service. Many pioneers of computing have been deeply disappointed in the limited use of computers as tools to improve human cognition. Douglas Engelbart disparaged the “dangerous, disappointing, narrow, path that we seem to be stuck with following”. When asked in 2006 how much of his vision had been achieved, Engelbart replied facetiously “about 2.8 percent”. Alan Kay gives talks asserting “The real computer revolution hasn’t happened yet” and in an interview has described the modern web as “reinventing the flat tire… at least give us what Engelbart did, for Christ’s sake.”
正如导言中所指出的,当然有很多口头上的赞美。比如说,经常听到技术专家影射乔布斯把计算机比喻为 "心灵的自行车"。但实际上,这很少只是口惠而实不至。许多计算机的先驱者都对计算机作为改善人类认知能力的工具被有限的使用深感失望。道格拉斯-恩格尔巴特Douglas Engelbart贬低了 "我们似乎在走的那条危险的、令人失望的、狭窄的道路上,我们似乎还在坚持走着这条路"。2006年,当被问及他的愿景已经实现了多少时,恩格尔巴特面带微笑地回答"大约2.8%"。艾伦-凯在演讲中断言"真正的计算机革命还没有发生",并在一次采访中将现代网络描述为 "重新发明了爆胎..........至少给我们提供了恩格尔巴特所做的一切,看在上帝的份上"。
Our experience is that many of today’s technology leaders genuinely venerate Engelbart, Kay, and their colleagues. Many even feel that computers have huge potential as tools for improving human thinking. But they don’t see how to build good businesses around developing new tools for thought. And without such business opportunities, work languishes.
我们的经验是,今天的许多技术领袖都是真心敬佩恩格尔巴特、凯,以及他们的同事。许多人甚至觉得计算机作为改进人类思维的工具,有着巨大的潜力。但他们没有看到如何围绕开发新的思维工具来建立良好的业务。而没有这样的商业机会,工作就会无精打采。
What makes it difficult to build companies that develop tools for thought? To answer this, consider Adobe, one of the few large companies serious about developing new tools for thought. It’s poured money into developing new mediums The plural of medium is, of course, media. However, in this context media would usually mean many pieces of new content. That’s not what we mean: we mean multiple different new mediums (Illustrator, Photoshop etc). We’ll reserve the unusual pluralization for this somewhat unusual meaning. for designers and artists – programs such as Illustrator, Photoshop, and so on. These mediums are remarkable tools for thought.
是什么原因导致开发思维工具的公司难以建立?要回答这个问题,可以考虑一下Adobe,它是少数几家认真开发新的思维工具的大公司之一。它把钱倾注在开发新的媒体上,媒体的复数当然是媒体。然而,在这里,媒体通常指的是许多新内容。这不是我们的意思:我们指的是多种不同的新媒体(Illustrator,Photoshop等)。对于设计师和艺术家来说,我们将保留这个有点不寻常的复数的含义,比如Illustrator、Photoshop等程序。这些媒介是非凡的思想工具。
Unfortunately for Adobe, such mediums are extremely expensive to develop, and it’s difficult to prevent other companies from cheaply copying the ideas or developing near-equivalents. Consider, for example, the way the program Sketch has eaten into Adobe’s market share, after duplicating many of the best features from several of Adobe’s products, perhaps most notably Illustrator. And consider the way Figma is now eating into both Sketch and Illustrator’s market share. Both Sketch and Figma have done this without needing to make an enormous investment in research. That’s a big advantage they have over Adobe.
不幸的是,对于Adobe来说,这种媒介的开发成本极高,很难阻止其他公司廉价复制这些想法或开发出近似的同类产品。比如说,考虑到Sketch程序在复制了Adobe的几个产品中的许多最佳功能后,Sketch蚕食了Adobe的市场份额,也许最明显的是Illustrator。而考虑到Figma现在正在蚕食Sketch和Illustrator的市场份额。Sketch和Figma都做到了这一点,而不需要在研究方面进行巨大的投资。这也是他们比Adobe公司的一大优势。
As Marc Andreessen has observed:
正如Marc Andreessen所指出的那样:
true defensibility purely at the product level is really rare in [Silicon] Valley, because there are a lot of really good engineers… And then there’s the issue of leap-frogging. The next team has the opportunity to learn from what you did and then build something better.
"在硅谷,纯粹在产品层面上的真正的可防御性在硅谷是非常少见的,因为有很多真正优秀的工程师...........然后是跳跃式的问题。下一个团队有机会从你所做的事情中学习,然后建立更好的东西。
Put another way, many tools for thought are public goods. They often cost a lot to develop initially, but it’s easy for others to duplicate and improve on them, free riding on the initial investment. While such duplication and improvement is good for our society as a whole, it’s bad for the companies that make that initial investment. And so such tools for thought suffer the fate of many public goods: our society collectively underinvests in them, relative to the benefits they provideOf course, it does cost money for companies such as Sketch and Figma to duplicate features originating in Illustrator, and they have introduced some improvements. So our characterization as a public good is only approximate. .
换句话说,很多思想工具都是公共产品。它们最初开发起来往往要花很多钱,但别人很容易复制和改进它们,无偿搭上最初的投资。虽然这种复制和改进对我们整个社会来说是好事,但对那些最初投资的公司来说却是坏事。当然,对于像Sketch和Figma这样的公司来说,复制源于Illustrator的功能确实花了很多钱,而且他们也做了一些改进。所以,我们将其定性为公共产品只是近似的。.
Earlier, we argued that modern design practice generally isn’t up to the challenge of producing genuinely transformative tools for thought. On the surface, that process-level argument appears very different to the public goods argument we just made. In fact, the process-level explanation is a consequence of the public goods explanation: companies don’t use the necessary processes because there’s little value to them in doing so. By contrast, in “harder-tech” industries – say, chip design – companies have much more incentive to do deep research work. In those industries it’s considerably harder for other companies to duplicate or capture the value of that research.
早些时候,我们曾论证过,现代设计实践一般来说并不具备产生真正的变革性思维工具的能力。从表面上看,这个过程层面的论证似乎与我们刚才提出的公共产品论证大相径庭。事实上,流程层面的解释是公共产品解释的结果:企业不使用必要的流程,因为这样做没有什么价值。相比之下,在 "较难的技术 "行业--比如说芯片设计--公司有更多的动力去做深度研究工作。在这些行业中,其他公司要想复制或获取这些研究的价值要难得多。
It’s illuminating to contrast with video games. Game companies develop many genuinely new interface ideas. This perhaps seems surprising, since you’d expect such interface ideas to also suffer from the public goods problem: game designers need to invest enormous effort to develop those interface ideas, and they are often immediately copied (and improved on) by other companies, at little cost. In that sense, they are public goods, and enrich the entire video game ecosystem.
对比一下电子游戏,很有启示意义。游戏公司开发了许多真正的新界面创意。这也许看起来很令人惊讶,因为你会想到这样的界面创意也会受到公共产品问题的困扰:游戏设计师需要投入巨大的精力来开发这些界面创意,而这些创意往往会立即被其他公司复制(和改进),而且成本不高。从这个意义上说,它们是公共产品,丰富了整个视频游戏生态系统。
But there’s a big difference between video game companies and companies such as Adobe. Many video games make most of their money from the first few months of sales. While other companies can (and do) come in and copy or riff on any new ideas, it often does little to affect revenue from the original game, which has already made most of its money In fact, cloning is a real issue in gaming, especially in very technically simple games. An example is the game Threes, which took the developers more than a year to make. Much of that time was spent developing beautiful new interface ideas. The resulting game was so simple that clones and near-clones began appearing within days. One near clone, a game called 2048, sparked a mini-craze, and became far more successful than Threes. At the other extreme, some game companies prolong the revenue-generating lifetime of their games with re-releases, long-lived online versions, and so on. This is particularly common for capital-intensive AAA games, such as the Grand Theft Auto series. In such cases the business model relies less on clever new ideas, and more on improved artwork (for re-release), network effects (for online versions), and branding. . While this copying is no doubt irritating for the companies being copied, it’s still worth it for them to make the up-front investment.
但电子游戏公司和Adobe等公司有很大的区别。许多视频游戏公司的大部分收入都来自于前几个月的销售。虽然其他公司可以(也确实)进来抄袭或翻版任何新的创意,但这往往对原创游戏的收入影响不大,因为原创游戏已经赚到了大部分的钱。一个例子就是《三》这款游戏,开发商花了一年多的时间来制作。其中大部分时间都花在了开发漂亮的新界面创意上。由此产生的游戏是如此简单,以至于几天内就开始出现了克隆和近似克隆的游戏。其中一款名为2048的近乎克隆的游戏,引发了一场小型的疯狂,并成为远比《三》更成功的游戏。在另一个极端,一些游戏公司通过重制版、长寿在线版等方式延长游戏的创收寿命。这种情况在资本密集型的AAA游戏中尤为常见,比如侠盗猎车手*系列等。在这种情况下,商业模式较少依靠巧妙的新创意,而更多的是依靠改进后的美工(重制版)、网络特效(网络版)和品牌推广。虽然这种抄袭无疑会让被抄袭的公司很恼火,但对于他们来说,前期的投资还是值得的。
The net result is that in gaming, clever new interface ideas can be distinguishing features which become a game’s primary advantage in the marketplace. Indeed, new interface ideas may even help games become classics – consider the many original (at the time) ideas in games ranging from Space Invaders to Wolfenstein 3D to Braid to Monument Valley. As a result, rather than underinvesting, many companies make sizeable investments in developing new interface ideas, even though they then become public goods. In this way the video game industry has largely solved the public goods problems.
最终的结果是,在游戏中,巧妙的新界面创意可以成为游戏的显著特征,成为游戏在市场上的主要优势。事实上,新的界面创意甚至可以帮助游戏成为经典---考虑一下从空间入侵者到狼人3D到Braid再到纪念碑谷等游戏中的许多原创(当时)创意。因此,许多公司并没有投资不足,而是在开发新的界面创意上进行了相当大的投资,即使这些创意随后成为公共产品。通过这种方式,电子游戏行业基本上解决了公共产品的问题。
By contrast, a company like Adobe builds their business around distribution and long-term lock in. They convince people – indeed, entire organizations – to make long-term commitments to their products. Schools offer classes so people can call themselves “Photoshop experts” or “Illustrator experts”. Companies designate their design departments as “Adobe shops”. So while Adobe does invest in developing clever new interface ideas (for them, unlike the video game companies, this genuinely means tools for thought), it’s less central to their competitive advantage, and they invest less than they would if it was their central advantage. And Adobe does perhaps as much or more work developing tools for thought as any company.
相比之下,像Adobe这样的公司,他们的业务是围绕着分销和长期锁定来建立的。他们说服人们--事实上,整个组织--对他们的产品做出长期承诺。学校开设课程,让人们可以自称 "Photoshop专家 "或 "Illustrator专家"。公司将其设计部门指定为 "Adobe商店"。因此,虽然Adobe确实投资于开发巧妙的新界面创意(对他们来说,与视频游戏公司不同的是,这真正意味着思考的工具),但这并不是他们竞争优势的核心,如果这是他们的核心优势,他们的投资就会比他们的核心优势更少。而Adobe在开发思想工具方面做的工作也许和任何公司一样多,甚至更多。
It’s encouraging that the video game industry can make inroads on the public goods problem. Is there a solution for tools for thought? Unfortunately, the novelty-based short-term revenue approach of the game industry doesn’t work. You want people to really master the best new tools for thought, developing virtuoso skill, not spend a few dozen hours (as with most games) getting pretty good, and then moving onto something new.
令人欣慰的是,电子游戏行业能够在公益性问题上有所作为。工具换思想,有没有办法解决?遗憾的是,游戏行业基于新奇的短期收入方式并不可行。你想让人们真正掌握最好的新的思维工具,开发出大师级的技能,而不是花几十个小时(就像大多数游戏一样)获得相当不错的成绩,然后再转入新的东西。
Another plausible solution to the public goods problem is patents, granting a temporary monopoly over use of an invention. Many software companies, including Adobe, develop a large patent portfolio. However, the current patent system is not a solution for this problem. In 2017, Dana Rao, Adobe’s Vice President for Intellectual Property and Litigation, posted a call for major reforms to the patent system, stating that:
公益品问题的另一个看似可行的解决办法是专利,授予发明的使用权以暂时垄断。包括Adobe在内的许多软件公司都发展了大量的专利组合。然而,目前的专利制度并不能解决这个问题。2017年,Adobe公司负责知识产权和诉讼的副总裁Dana Rao发文呼吁,呼吁对专利制度进行重大改革,称。
[the patent] system is broken… What happened? A patent gold rush built by patent profiteers… Their value lies not in the innovation behind the patent but in the vagueness of the patent’s claims and the ability to enforce it in a plaintiff-friendly forum… Where did the material for these bad patents come from? The advent of software… This led to idea-only patents being granted with broad and often invalid claims, and eager patent profiteers were only too glad to take advantage.
[专利]制度被打破了.发生了什么?专利暴利者制造的专利淘金热...........他们的价值不在于专利背后的创新,而在于专利权利要求的模糊性,以及在原告友好的法庭上执行专利的能力.........这些不良专利的材料从哪里来?软件的出现...........这就导致了仅有想法的专利被授予权利要求宽泛且往往是无效的权利要求,而急于求成的专利暴利者们却乐于从中渔利。
Adobe shares in common with many other software companies that much of their patenting is defensive: they patent ideas so patent trolls cannot sue them for similar ideas. The situation is almost exactly the reverse of what you’d like. Innovative companies can easily be attacked by patent trolls who have made broad and often rather vague claims in a huge portfolio of patents, none of which they’ve worked out in much detail. But when the innovative companies develop (at much greater cost) and ship a genuinely good new idea, others can often copy the essential core of that idea, while varying it enough to plausibly evade any patent. The patent system is not protecting the right things.
Adobe与许多其他软件公司的共同点是,他们的大部分专利都是防卫性的:他们把想法申请专利,这样专利侵权者就不能因为类似的想法而起诉他们。情况几乎与你所希望的完全相反。创新型公司很容易受到专利巨头的攻击,他们在庞大的专利组合中提出了宽泛的、往往相当模糊的权利要求,而这些权利要求都不是他们详细研究出来的。但是,当创新公司开发出一个真正好的新创意(成本要高得多)并出货时,其他公司往往可以复制这个创意的基本核心,同时对其进行修改,使其有足够的变化,从而可以合理地规避任何专利。专利制度并不是保护正确的东西。
Switching away from the viewpoint of individual companies, and to the viewpoint of society as a whole, not only do we want to incentivize invention, we also want ideas to move reasonably rapidly into the public domain. Think about fundamental tools for thought such as writing and the number system. Obviously, it’s good that those spread throughout society, unencumbered by IP concerns! More broadly, many tools of thought become more valuable for society as they become more ubiquitous. Again, here the modern patent system has numerous well-known problems, striking a poor balance between private and public interest. While a well-designed patent system might very well help solve the public goods problem, the patent system we actually have seems poorly adapted to the problem.
转而从个别企业的观点出发,转而从整个社会的观点出发,我们不仅要激励发明,更希望思想能够合理快速地进入公共领域。思考一下基本的思想工具,比如写作和数字系统。很显然,这些东西能在整个社会中传播,不受知识产权问题的影响,这是很好的。更广泛地讲,许多思想工具随着它们的普及而变得更有价值。同样,在这里,现代专利制度也有许多众所周知的问题,在私人利益和公共利益之间没有取得很好的平衡。虽然一个精心设计的专利制度很可能有助于解决公共利益问题,但我们实际拥有的专利制度似乎并不适应这个问题。
Is it possible to avoid the public goods problem altogether? Here’s three classes of tools for thought which do:
有没有可能完全避免公共产品的问题?这里有三类思维工具,可以做到。
- Search engines such as Google are tools for thought. They avoid the public goods problem because their value is in their brand and in hard-to-duplicate and capital intensive backend elements (including their data centers, proprietary algorithms, ad network, and distribution), not in their interface ideas.
- 像谷歌这样的搜索引擎是思想的工具。他们避免了公共产品的问题,因为他们的价值在于他们的品牌和难以复制的、资本密集型的后端要素(包括他们的数据中心、专有算法、广告网络和分销),而不是他们的接口思想。
- A service such as Twitter can be considered a tool for collective thought. While the interface is easily copied, the company is hard to duplicate, due to network effects.
- 像Twitter这样的服务,可以说是集体思考的工具。虽然界面容易被复制,但由于网络效应的影响,企业很难复制。
- Novel hardware devices (e.g., for VR, or the Wii remote, or for new musical instruments) can be used as the basis for new tools for thought. While hardware can be duplicated, it’s often much more expensive than duplicating software. And, in any case, the advantage for such companies is often in distribution, marketing, and relationships with vendors who make products for the platform.
- 新颖的硬件设备(如VR,或Wii遥控器,或新的乐器)可以作为新的思维工具的基础。虽然硬件可以复制,但往往比复制软件要贵得多。而且,无论如何,这类公司的优势往往在于分销、营销,以及与为该平台制造产品的厂商的关系。
While these suggestions all avoid the public goods problem, they don’t directly solve the public goods problem. And many promising directions – including ideas such as the mnemonic medium and mnemonic videos – involve a substantial public goods element. Is it possible to solve the public goods problem in such cases? The two most promising approaches seem to us to be:
虽然这些建议都避免了公共物品问题,但并没有直接解决公共物品问题。而且很多有前景的方向--包括记忆媒介和记忆视频等想法--都涉及到了大量的公共物品因素。在这种情况下,是否有可能解决公共物品问题?在我们看来,最有希望的两种方法是:
- Philanthropic funding for research. This approach was used, for instance, by the field of computer animation and animated movies. Decades of public research work on computer animation resulted in a large number of powerful and (in many cases) publicly available ideas. This, in turn, helped prepare the way for companies such as Pixar and Dreamworks, which developed many of the ideas further, and took them to scale.
- 慈善机构的研究经费。例如,计算机动画和动画电影领域就采用了这种方法。几十年来,计算机动画的公开研究工作产生了大量强大的、(在许多情况下)公开的想法。这反过来又为皮克斯和梦工厂等公司铺平了道路,这些公司进一步发展了许多想法,并将其推向了规模化。
- The model used by Adobe and similar companies, in which new tools for thought are a central part of the company’s operations, but not the core of their competitive moat. That moat may instead be built around training, marketing, documentation, and so on.
- Adobe和类似公司所采用的模式,在这种模式下,新的思维工具是公司运营的核心部分,但不是公司竞争护城河的核心。相反,这种护城河可能是围绕着培训、营销、文档等建立的。
Questioning our basic premises | 质疑我们的基本前提
There are three important premises we’ve taken for granted up to now. First is the assertion that we’re still in the early days, that many more transformative tools for thought are yet to be discovered. Second is the assertion that work on tools for thought is stalled, that there’s not lots of interesting work going on. And third, a kind of meta-premise, is the assertion that this kind of work is worth doing, relative to the current fashion for related ideas such as artificial general intelligence and brain-computer interfaces. In this section we discuss these premises.
有三个重要的前提,我们到现在为止都认为是理所当然的。首先是这样的断言:我们还处于早期阶段,还有更多的思想变革工具有待发现。第二是断言,关于思想工具的工作停滞不前,没有很多有趣的工作在进行。而第三种,是一种元前提,即相对于目前的相关思想,如人工智能和脑机接口等相关思想的流行,这种工作是值得做的断言。在这一节,我们将讨论这些前提。
What if the best tools for thought have already been discovered? 如果最好的思想工具已经被发现了呢?
In other words, perhaps the 1960s and 1970s were an unrepeatable golden age, and all we can expect in the future is gradual incremental improvement, and perhaps the occasional major breakthrough, at a decreasing frequency?
换句话说,也许上世纪六七十年代是一个不可重复的黄金时代,未来我们所能期待的就是逐渐的渐进式的进步,也许偶尔的重大突破,频率越来越低?
There’s a plausible story suggesting this is true. Tech is an enormous industry, well funded, with many bright, ambitious, talented people. Surely if there were major ideas to discover, people would do so? This argument is reinforced by the fact that, at the individual level, we meet many brilliant people who are fascinated by (and often working on) tools for thought, but who nonetheless seem to be making slow progress.
有一个似是而非的故事表明这是真的。科技是一个巨大的行业,资金充足,有很多聪明、有野心、有才华的人。当然,如果有重大的想法可以发现,人们肯定会这样做?在个人层面上,我们会遇到很多优秀的人,他们对思想工具着迷(而且经常在研究),但尽管如此,他们似乎进展缓慢,这个论点得到了证实。
But while this story has a superficial appeal, it’s misleading. Really difficult problems – problems like inventing Hindu-Arabic numerals – aren’t solved by good intentions and interest alone. A major thing missing is foundational ideas powerful enough to make progress. In the earliest days of a discipline – the proto-disciplinary stage – a few extraordinary people – people like Ivan Sutherland, Doug Engelbart, Alan Kay, and Bret Victor – may be able to make progress. But it’s a very bespoke, individual progress, difficult to help others become proficient in, or to scale out to a community. It’s not yet really a discipline. What’s needed is the development of a powerful praxis, a set of core ideas which are explicit and powerful enough that new people can rapidly assimilate them, and begin to develop their own practice. We’re not yet at that stage with tools for thought. But we believe that we’re not so far away either.
但是,虽然这个故事有表面的吸引力,但它有误导性。真正困难的问题--比如发明印度教阿拉伯数字的问题--并不是仅仅靠好心和兴趣就能解决的。缺少的一个重要因素是,缺少足够强大的基础性的思想,而这些思想又足以让人进步。在一门学科的最初阶段---原学科阶段---几个不平凡的人--如伊万-萨瑟兰、道格-恩格尔巴特、艾伦-凯和布雷特-维克多等人--或许能够取得进展。但这是一个非常定制的、个人的进步,很难帮助别人精通,也很难推广到一个社区。这还不是一个真正的学科。我们需要的是发展出一套强大的赞美法,一套核心思想,这些核心思想足够明确,足够强大,新的人可以迅速吸收,并开始发展自己的实践。我们还没有到那个阶段的思想工具。但我们相信,我们也没有那么远。
While that argument is helpful context, it doesn’t address the core point: it doesn’t mean there are a lot of new transformative tools for thought waiting to be discovered. Again: maybe the most important tools for thought have already been discovered?
虽然这个论点是有帮助的语境,但它并没有解决核心问题:这并不意味着有很多新的变革性的思想工具等待被发现。还是那句话:也许最重要的思想工具已经被发现了?
We can’t predict the future, so it’s not possible to answer this question with certainty. But it seems to us that the human race just hasn’t really tried very hard yet. When small groups of motivated people do – as in pioneering labs such as PARC, SRI, and other DARPA-inspired early efforts, as well as modern labs such as Dynamicland – they make rapid progress. It’s extremely encouraging that those efforts – tiny efforts, in the scheme of humanity’s overall research effort – make such rapid progress. To us, that suggests scaling them up, becoming much more ambitious.
我们无法预测未来,所以无法肯定地回答这个问题。但在我们看来,人类只是还没有真正的努力过。当一小群有干劲的人做的时候--就像PARC、SRI和其他受DARPA启发的早期努力,以及像Dynamicland这样的现代实验室一样--他们取得了迅速的进展。这些努力--在人类整体研究工作中的微小努力--取得如此迅速的进展是非常令人鼓舞的。对我们来说,这意味着要扩大这些努力的规模,变得更加雄心勃勃。
Isn’t this what the tech industry does? Isn’t there a lot of ongoing progress on tools for thought? | 科技行业不就是这样的吗?不就是在思想工具上不断进步吗?
In particular, aren’t there already a lot of imaginative, determined, well-funded people working on this? Isn’t tech in considerable part already about developing new tools for thought?
特别是,不是已经有很多有想象力、有决心、有资金的人在做这件事了吗?科技不是已经有相当一部分人在开发新的思想工具了吗?
Part of this question is caused by a confusion in terms. Obviously, many tech companies build special-purpose tools for solving specific problems. But while those may be valuable tools, they’re certainly not “tools for thought” in the broad sense we’re discussing – not like language or writing or, for that matter, Illustrator.
这个问题的部分原因是由于术语上的混淆。很明显,许多科技公司为解决特定的问题而构建特殊用途的工具。但是,虽然这些可能是有价值的工具,但它们肯定不是我们所讨论的广义的 "思想工具"--不像语言或写作,也不像Illustrator那样。
Still, there are tech companies which really do develop tools for thought. We already discussed some examples where companies have partially or totally avoided the public goods problem, tools such as: Illustrator, Google Search, Twitter, Slack, Google Docs, programmer toolsProgrammer tools are a case where the insight-through-making loop operates quite well. The avoidance of the public goods problem is enabled by a complex set of factors, including the fact that this is a case where many highly skilled researchers are simultaneously also accomplished makers, and it’s either their job to produce public goods (researchers) or an enjoyable hobby. To a lesser extent the same is true in the artistic and music communities., and so on. All really are significant tools for thought.
尽管如此,还是有一些科技公司确实开发出了思考的工具。我们已经讨论过一些公司部分或完全避免了公共产品问题的例子,比如说工具。Illustrator、Google Search、Twitter、Slack、Google Docs、程序员工具Programmer toolsProgrammer工具是一个洞察力制造循环运作相当好的案例。公共产品问题的回避是由一系列复杂的因素促成的,其中包括这样一个事实:在这种情况下,许多高技能的研究人员同时也是有成就的制造者,他们的工作要么是生产公共产品(研究人员),要么是一种享受的爱好。在艺术界和音乐界也是如此,在较小的程度上也是如此,等等。都确实是重要的思想工具。
But consider our most fundamental tools for thought – language, writing, music, etc. Those are public goods. No-one owns language; to the extent that it is owned (trademarks and so on) it may actually limit the utility of language. These tools are all about introducing fundamental new mental representations and mental operations. Those aren’t owned by any company, they’re patterns owned by humanity.
但考虑到我们最基本的思想工具--语言、写作、音乐等等。这些都是公共产品。没有人拥有语言;在拥有语言的程度上(商标等),它可能实际上限制了语言的效用。这些工具都是为了引入基本的新的心理表象和心理操作。那些不是属于任何公司的,它们是人类拥有的模式。
This argument makes it seem likely that many of the most fundamental and powerful tools for thought do suffer the public goods problem. And that means tech companies focus elsewhere; it means many imaginative and ambitious people decide to focus elsewhere; it means we haven’t developed the powerful practices needed to do work in the area, and a result the field is still in a pre-disciplinary stage. The result, ultimately, is that it means the most fundamental and powerful tools for thought are undersupplied.
这个论点让人觉得很可能很多最基本、最强大的思想工具确实存在着公益性问题。而这就意味着科技公司将注意力转移到了其他地方;意味着很多富有想象力和野心的人决定将注意力转移到其他地方;意味着我们还没有开发出在这个领域做工作所需的强大实践,结果这个领域还处于学科前阶段。归根结底,其结果是,这意味着最基本的、最有力的思想工具供应不足。
Why not work on artificial general intelligence (AGI) or brain-computer interfaces (BCI) instead? | 为什么不研究人工智能(AGI)或脑机接口(BCI)呢?
We’re often asked: why don’t you work on AGI or BCI instead of tools for thought? Aren’t those more important and more exciting? And for AGI, in particular, many of the skills required seem related.
经常有人问我们:为什么不做AGI或者BCI,而不做思想工具?那些不是更重要、更精彩吗?而对于AGI,尤其是AGI,很多技能的要求似乎都是相关的。
They certainly are important and exciting subjects. What’s more, at present AGI and BCI are far more fashionable (and better funded). As a reader, you may be rolling your eyes, supposing our thinking here is pre-determined: we wouldn’t be writing this essay if we didn’t favor work on tools for thought. But these are questions we’ve wrestled hard with in deciding how to spend our own lives. One of us wrote a book about artificial intelligence before deciding to focus primarily on tools for thought; it was not a decision made lightly, and it’s one he revisits from time to time. Indeed, given the ongoing excitement about AGI and BCI, it would be surprising if people working on tools for thought didn’t regularly have a little voice inside their head saying “hey, shouldn’t you be over there instead?” Fashion is seductive.
它们当然是重要和令人兴奋的课题。更重要的是,目前AGI和BCI更时尚(而且资金更充足)。作为一个读者,你可能会揉揉眼睛,认为我们在这里的思考是预设的:如果我们不偏向于思想工具的工作,我们就不会写这篇文章。但这些都是我们在决定如何度过自己的人生的时候苦苦挣扎的问题。我们中的一个人写了一本书关于人工智能的书,然后才决定主要专注于思想工具的工作;这不是一个轻率的决定,他时不时地重新审视这个决定。的确,考虑到AGI和BCI的持续热潮,如果那些从事思想工具的人没有经常在脑海中出现一个小声音说 "嘿,你不应该去那边换个地方吗?" 时尚是有诱惑力的。
One striking difference is that AGI and BCI are based on relatively specific, well-defined goals. By contrast, work on tools for thought is much less clearly defined. For the most part we can’t point to well-defined, long-range goals; rather, we have long-range visions and aspirations, almost evocations. The work is really about exploration of an open-ended question: how can we develop tools that change and expand the range of thoughts human beings can think?
一个显著的区别是,AGI和BCI都是基于相对具体、明确的目标。相比之下,思想工具的工作就不那么明确了。在大多数情况下,我们不能指出明确界定的、长期的目标;相反,我们有长期的愿景和愿望,几乎是唤起了我们的想象。这项工作实际上是在探索一个开放性的问题:我们如何开发出改变和扩大人类思维范围的工具,从而改变和扩大人类的思维范围?
Culturally, tech is dominated by an engineering, goal-driven mindset. It’s much easier to set KPIs, evaluate OKRs, and manage deliverables, when you have a very specific end-goal in mind. And so it’s perhaps not surprising that tech culture is much more sympathetic to AGI and BCI as overall programs of work.
在文化上,技术是由工程化、目标驱动的思维方式主导的。当你心中有一个非常具体的最终目标时,设定KPI、评估OKR和管理交付成果就会容易得多。因此,科技文化对AGI和BCI作为整体工作计划更认同,这也许并不奇怪。
But historically it’s not the case that humanity’s biggest breakthroughs have come about in this goal-driven way. The creation of language – the ur tool for thought – is perhaps the most important occurrence of humanity’s existence. And although the origin of language is hotly debated and uncertain, it seems extremely unlikely to have been the result of a goal-driven process. It’s amusing to try imagining some prehistoric quarterly OKRs leading to the development of language. What sort of goals could one possibly set? Perhaps a quota of new irregular verbs? It’s inconceivable!
但从历史上看,人类最大的突破并非是以这种目标驱动的方式来实现的。语言的创造--思想的工具--或许是人类存在的最重要的事件。而且,尽管语言的起源存在着激烈的争论和不确定性,但它似乎极不可能是目标驱动的结果。试着想象一些史前的季度OKR导致语言的发展是很有趣的。人们可能会设定什么样的目标呢?也许是新的不规则动词的配额?这简直是不可想象的!
Similarly, the invention of other tools for thought – writing, the printing press, and so on – are among our greatest ever breakthroughs. And, as far as we know, all emerged primarily out of open-ended exploration, not in a primarily goal-driven way. Even the computer itself came out of an exploration that would be regarded as ridiculously speculative and poorly-defined in tech today. Someone didn’t sit down and think “I need to invent the computer”; that’s not a thought they had any frame of reference for. Rather, pioneers such as Alan Turing and Alonzo Church were exploring extremely basic and fundamental (and seemingly esoteric) questions about logic, mathematics, and the nature of what is provable. Out of those explorations the idea of a computer emerged, after many years; it was a discovered concept, not a goal. Fundamental, open-ended questions seem to be at least as good a source of breakthroughs as goals, no matter how ambitious. This is difficult to imagine or convince others of in Silicon Valley’s goal-driven culture. Indeed, we ourselves feel the attraction of a goal-driven culture. But empirically open-ended exploration can be just as, or more successful.
同样,其他思想工具的发明--写作、印刷术等--也是我们有史以来最伟大的突破之一。而且,据我们所知,所有这些工具的出现主要是出于开放式的探索,而不是以目标驱动的方式出现的。即使是计算机本身也是在探索中产生的,而在今天的科技界,这种探索会被认为是可笑的投机行为,而且定义不清。有人并没有坐下来想 "我需要发明计算机",这不是他们的想法,他们没有任何参考框架。相反,像艾伦-图灵和阿隆佐-丘奇这样的先驱者,正在探索关于逻辑、数学和可证明的本质的极其基本和根本性的问题(看似深奥的)。在这些探索中,多年后,计算机的概念出现了;它是一个被发现的概念,而不是目标。基础性的、开放性的问题似乎至少和目标一样是突破的源泉,无论目标多么宏大。这一点在硅谷的目标驱动文化中是很难想象的,也很难说服别人。事实上,我们自己也感受到了目标驱动文化的吸引力。但从经验上看,开放性的探索也会同样或更成功。
“What will new tools for thought be like?” is a question we hear often. And yet, almost by definition, we cannot say. As we noted earlier, if we could communicate the experience in an essay, then the tools would be failing at their job; they would not be transforming a person’s thinking, or even their consciousness. Concretely: to understand the mnemonic medium you must use it intensively over an extended period. And even then you may not be conscious of the effect; we’ve done interviews with users who are apparently unaware of the incredible level of recall they have of material in the essay they have read. One of the most famous papers in the philosophy of consciousness is entitled “What is it like to be a bat?” Each tool for thought poses a similar question, near impossible to answer without immersion in the tool: “What is it like to be a language user? A musician?” and so on.
"新的思想工具会是什么样的?"这是我们经常听到的一个问题。然而,几乎从定义上来说,我们却无法说出来。正如我们前面所指出的,如果我们可以用一篇文章来传达经验,那么这些工具就会失灵;它们不会改变一个人的思维,甚至不会改变一个人的意识。具体来说:要理解记忆媒介,你必须在较长的时间内密集地使用它。而即使是这样,你也可能没有意识到这种效果;我们曾经做过一些用户的访谈,他们显然没有意识到他们对自己所读过的文章中的材料有多么惊人的记忆力。意识哲学中最著名的一篇论文的题目是『做一个蝙蝠是什么样子的?』 每一个思考的工具都提出了一个类似的问题,如果没有沉浸在工具中,几乎无法回答。"做一个语言使用者是什么样子的?一个音乐人?"等问题。
It seems plausible to us that work on tools for thought will be, over the next few decades, more important than work on AGI and BCI. And, given how fashionable and well-funded work on AGI and BCI currently is, it seems nearly certain that work on tools for thought offers vastly greater benefit, at the margin.
在我们看来,在未来几十年里,思想工具的工作似乎有可能比AGI和BCI的工作更重要。而且,考虑到目前AGI和BCI的工作是多么的时髦和资金充足,似乎几乎可以肯定的是,思想工具的工作会带来更大的利益,而且是在边缘地带。
What about the longer term? There, the situation is less clear. It seems likely that the three fields will merge, or at least feed strongly into one another. Together with Shan Carter, one of us has argued that one of the most promising applications for AI is as a way of discovering new tools for thought.
长期来看,情况如何?在那里,情况就不那么清楚了。似乎这三个领域很可能会融合在一起,或者说至少会强烈地相互促进。我们中的一个人和Shan Carter一起认为,人工智能最有希望的应用之一是作为发现新的思维工具的一种方式。
BCI seems likely to be even more closely related. BCI is sometimes described using ideas like a memory chip for long-term memories, or some way of increasing short-term working memory. Such ideas may well become important. But it also seems possible that BCIs will be used to enable new mental operations, new mental representations, and new affordances for thought; in short, the same kind of things as are involved in developing non-BCI tools for thought. Perhaps we’ll develop the capacity to directly imagine ourselves in 4 or 5 or more dimensions; or traversing a Riemann manifold; or the ability to have multiple tracks of conscious attention. These are about changing the interface for thought, the basic abstractions and operations which are allowed. And so it seems plausible that work today on tools for thought will directly impact the way we use BCIs in the future.
BCI似乎更有可能是紧密相连的。BCI有时会用诸如长期记忆的记忆芯片,或者是增加短期工作记忆的某种方式来描述。这样的想法很可能会变得很重要。但是,BCI似乎也有可能被用来实现新的心智操作、新的心智表征和新的思维负担;简而言之,这与开发非BCI的思维工具所涉及的东西是一样的。也许我们会开发出直接在4维或5维或更多维度中想象自己的能力;或者是穿越黎曼歧管的能力;或者是有意识的多轨道注意力的能力。这些都是关于改变思维的界面,改变基本的抽象和允许的操作。因此,今天关于思维工具的工作似乎很有可能会直接影响到未来我们使用BCI的方式。
Executable books | 可执行的书籍
The skill of writing is to create a context in which other people can think.— Edwin Schlossberg
写作的技巧是创造一个别人可以思考的环境。
The computer scientist Peter Norvig has written an interactive essay discussing the distribution of wealth in society. Norvig’s essay is a Jupyter notebook which expresses many of the ideas in running Python code. That code sets up a population of agents, with an initial distribution of wealth. Agents randomly (and repeatedly) meet one another in pairs, and engage in simple economic transactions. More concretely: a simple transaction model could be that when two people meet, their joint wealth is pooled, and then randomly divided between the two of them. That model is just to give you the gist – more complex transaction models are, of course, possible. The notebook simulates how the distribution of wealth evolves over time.
计算机科学家Peter Norvig写了一篇互动作文讨论社会中的财富分配问题。Norvig的文章是一个Jupyter笔记本,在运行Python代码中表达了很多想法。那段代码设置了一个群体的代理,有一个初始的财富分配。代理人随机(并反复)成双成对地相遇,进行简单的经济交易。更具体地说:一个简单的交易模型可以是,当两个人相遇时,他们的共同财富被集中起来,然后在他们两个人之间随机分配。这个模型只是为了给你一个大概的说明--当然,更复杂的交易模型也是可以的。本子模拟了财富的分布是如何随着时间的推移而演变的。
Part of what makes Norvig’s essay beautiful is that with just a few lines of Python code Norvig is able to show some surprising results about wealth inequality. For instance, his results suggest that the initial distribution of wealth in the economy doesn’t much affect the long-run distribution of wealth. Rather, it’s the nature of the transactions which determines the long-run distribution of wealth. This likely violates at least some user’s intuitions. As another example, his results also suggest that constraining agents to trade only with people geographically near them makes little difference to the final distribution of wealth.
Norvig的文章之所以美丽,部分原因在于,Norvig仅用几行Python代码就能展示出一些关于财富不平等的惊人的结果。例如,他的结果表明,经济中财富的初始分配对财富的长期分配并没有太大的影响。相反,决定财富的长期分配的是交易的性质。这可能至少违反了一些用户的直觉。作为另一个例子,他的研究结果也表明,约束代理人只与地理上靠近他们的人进行交易,对财富的最终分配没有什么影响。
Results like these will challenge the intuition of some users. But instead of those challenges being on the basis of easily-ignored abstract arguments, users can immediately engage with Norvig’s model. Suppose someone doesn’t like the idea that the initial distribution of wealth doesn’t affect long-run wealth inequality. They’re challenged to find a counterexample, an initial distribution of wealth which does affect long-run inequality. They can experiment easily, making simple modifications to just one or a few lines of Python code, trying to find instances where the initial distribution matters. No matter whether they succeed or fail, they will build a better understanding of the problem.
这样的结果会挑战一些用户的直觉。但是,这些挑战并不是建立在容易被忽视的抽象论点的基础上,而是用户可以立即参与到诺维格的模型中来。假设有人不喜欢财富的初始分配不会影响长期财富不平等的观点。他们被要求找到一个反例,即财富的初始分配确实会影响长期不平等。他们可以很容易地进行实验,只需对Python代码中的一个或几行进行简单的修改,试图找到影响初始分配的实例。无论成功或失败,他们都会建立起对问题的更好的理解。
Suppose the content of Norvig’s essay had instead been presented in a more conventional static form. For a reader to extend or interrogate the results would require total mastery of the material, and a high level of mathematical competence. But in the notebook format it’s much easier for the reader to experiment. Their exploration is scaffolded, they can make small modifications and see the results, even the answers to questions Norvig did not anticipate. This kind of scaffolded exploration is a way to build up their own understanding, and perhaps even push the frontiers of knowledge.
假设诺维格的论文内容是以一种比较传统的静态形式呈现。读者要想对结果进行延伸或审问,就需要完全掌握材料,并具备较高的数学能力。但在笔记本的形式下,读者的实验就容易得多。他们的探索是有脚手架的,他们可以做一些小的修改,看到结果,甚至是诺维格没有预料到的问题的答案。这种脚手架式的探索,可以让他们建立起自己的理解,或许还能推动知识的前沿。
Norvig’s essay is one of thousands (or perhaps even millions) of Jupyter notebooks that have been created. Of course, most such notebooks are hastily and poorly written. But in the hands of an excellent writer and thinker like Norvig, notebooks can become remarkable environments for thought, both individual and shared. It’s tempting to regard them as merely a mashup of essay and code. But really they’re a new media form, with different possibilities from either essays or code, and with striking opportunities to go much further. In this section we explore those opportunitiesOf course, systems like Jupyter go back decades. There are antecedents in Knuth’s notion of literate programming, in Mathematica notebooks, in PARC’s Learning Research Group, in the PLATO system (and, more broadly, computer-assisted instruction), to name but a few. In the discussion below we emphasize opportunities that seem to us undervalued in many of these prior systems..
诺维格的文章是成千上万(甚至可能是数百万)的朱庇特笔记本中的一个。当然,大多数这样的笔记本都是草草了事,写得很差。但在诺维格这样的优秀作家和思想家的手中,笔记本可以成为一个非凡的思想环境,无论是个人的还是共享的。人们很容易把它们看成是散文和代码的混搭。但实际上,它们是一种新的媒体形式,有别于散文或代码的可能性,而且有更多的机会,可以走得更远。当然,像Jupyter这样的系统可以追溯到几十年前。在Knuth的识字编程概念、Mathematica笔记本、PARC的学习研究小组、PLATO系统(以及更广义的计算机辅助教学)中都有先例。在下面的讨论中,我们强调了许多在我们看来被低估的机会。
We described Norvig’s essay as an “interactive essay”. It’s useful to have a more specific term, to distinguish it from other interactive forms, like the mnemonic medium. In this essay, we’ll use the term “executable book”This is, of course, a placeholder term. “Executable essay” would in many ways be more natural, though unfortunately that term is perhaps even more naturally interpreted as meaning “web page”, in the current context.. We won’t define this precisely here; definition is not the point. Rather, the point is to try to better understand the potential of media forms which combine prose and code in something like this form.
我们把诺维格的散文描述为 "互动式散文"。有一个更具体的术语是有用的,以区别于其他的互动形式,如记事本媒介。在这篇文章中,我们将使用 "可执行的书 "这个词,当然,这是一个占位词。"可执行的文章 "在很多方面会更自然一些,尽管不幸的是,这个词在目前的语境中,也许被更自然地解释为 "网页 "的意思。我们不会在这里准确地定义这个词,定义不是重点。相反,重点是试图更好地理解媒体形式的潜力,这些媒体形式将散文和代码结合在一起,以这样的形式出现。
Seymour Papert, one of the principal creators of the Logo programming language, had a remarkable aspiration for Logo. Logo is sometimes described as a “programming language for children”, and people sometimes think Papert was mostly interested in helping children learn how to program. But that wasn’t Papert’s principal intent. Rather, Papert wanted to create an immersive environment – a kind of “Mathland” – in which children could be immersed in mathematical ideas. In essence, children could learn differential geometry by going to Mathland.
Seymour Papert是Logo编程语言的主要创造者之一,他对Logo有着非凡的追求。Logo有时被描述为 "儿童编程语言",人们有时会认为Papert主要是为了帮助儿童学习编程。但这并不是Papert的主要意图。相反,Papert希望创造一个沉浸式的环境--一种 "Mathland"--让孩子们沉浸在数学思想中。从本质上说,孩子们可以通过去Mathland学习微分几何。
It’s a beautiful aspiration, and Logo contains many striking ideas. But as far as we know, no professional differential geometer (or, more generally, mathematician) uses Logo seriously as a tool in their work. And upon reflection that seems troubling. If Logo genuinely expresses the ideas of differential geometry, why don’t differential geometers use it? You start to wonder: might it be that Logo leaves out important ideas about differential geometry, maybe even the most important ideas about differential geometry? After all, while mathematically trained, Papert wasn’t himself an accomplished differential geometer. How would he even have known what to include? And certainly most of the people interested in Logo aren’t qualified to make that judgment.
这是一个美好的愿望,Logo包含了许多引人注目的想法。但据我们所知,没有一个专业的微分地球仪(或者更普遍的说是数学家)在工作中认真使用Logo作为工具。仔细想来,这似乎是令人担忧的。如果Logo真正表达了微分几何的思想,为什么微分几何学家不使用它?你开始思考:可能是Logo遗漏了关于微分几何的重要思想,甚至可能是关于微分几何最重要的思想?毕竟,虽然受过数学训练,但Papert本身并不是一个有成就的微分几何学家。他怎么会知道要包括哪些内容呢?当然,大多数对Logo感兴趣的人也没有资格做出这样的判断。
There’s a standard retort to this, which we’ve heard from within the Logo community. It’s to talk about the “floor” and “ceiling” of different environments for thought. In this account, Logo has a low floor (meaning anyone can use it) and a low ceiling (so it’s not well adapted for the sort of advanced work a professional would want to do).
对此,我们在Logo社区内有一个标准的反驳。那就是谈不同环境的 "地板 "和 "天花板 "的思考。在这个账号中,Logo有一个低地板(意味着任何人都可以使用)和一个低天花板(所以它不太适应专业人员想做的那种高级工作)。
At first this sounds plausible. But upon reflection it’s difficult to make much sense of. How do the creators of Logo know that mastering Logo helps later with understanding real (forgive us!) differential geometry? What’s the criterion for success? One of us (MN) worked for several years doing research in the closely related field of Riemannian geometry. While Logo is enjoyable to use and contains many fun ideas, MN has trouble seeing that learning Logo would help much in learning differential geometry.
起初听起来似乎很有道理。但仔细想来,这很难说得通。Logo的创作者们是怎么知道掌握Logo有助于以后理解真正的(原谅我们!)微分几何?成功的标准是什么?我们中的一个人(MN)在与黎曼几何密切相关的领域做了几年的研究。虽然Logo使用起来很愉快,而且包含了许多有趣的想法,但MN认为学习Logo对学习微分几何有很大的帮助。
At the end of Norvig’s economics essay is a short afterword explaining how he came to write the essay. Shortly before writing the essay he’d heard about the kinds of economic models discussed in the notebook, and he wanted to explore several questions about them. After talking it over with some colleagues they decided to each independently attack the problems, and to compare notes. Although Norvig’s essay is, in some sense, “educational”, Norvig’s intent was to explore a set of problems he himself was genuinely curious about. The educational aspect was a byproduct.
在诺维格的经济学论文的最后,有一段简短的后记,解释了他是怎么来写这篇论文的。在写这篇论文前不久,他听说了笔记本上讨论的各类经济学模型,他想探讨一下关于这些模型的几个问题。在和几个同事讨论过后,他们决定各自独立攻克这些问题,并进行笔记对比。虽然诺维格的文章在某种意义上说是 "教育性 "的,但诺维格的意图是探索他自己真正好奇的一组问题。教育性的一面是一个副产品。
And so what you have is a world-class research scientist who wanted to explore a set of questions. He used the Jupyter medium to do those explorations, and then to share that exploration with the world. And he shared it in a form where others could immediately build upon and extend his thinking.
所以你所拥有的是一位世界级的研究科学家 他想探索一系列的问题。他用Jupyter媒介来做这些探索, 然后与世界分享这种探索。而且他把它以一种形式分享出来,让别人可以立即建立在他的思想基础上,并扩展他的思想。
There’s a lot of work on tools for thought that takes the form of toys, or “educational” environments. Tools for writing that aren’t used by actual writers. Tools for mathematics that aren’t used by actual mathematicians. And so on. Even though the creators of such tools have good intentions, it’s difficult not to be suspicious of this pattern. It’s very easy to slip into a cargo cult mode, doing work that seems (say) mathematical, but which actually avoids engagement with the heart of the subject. Often the creators of these toys have not ever done serious original work in the subjects for which they are supposedly building tools. How can they know what needs to be included?
有很多关于思想工具的工作,都是以玩具的形式,或者说是 "教育 "环境的形式。用于写作的工具,而不是实际的作家使用的工具。用于数学的工具,不是真正的数学家使用的。诸如此类的工具。尽管这类工具的创作者的初衷是好的,但这种模式很难不被怀疑。很容易滑入货物崇拜模式,做一些看起来(比如说)是数学的工作,但实际上却避开了与主题的核心内容的接触。通常,这些玩具的创作者们往往没有在他们所要建造的工具的主题上做过认真的原创工作。他们怎么可能知道需要包括哪些内容呢?
Concretely: suppose you want to build tools for subject X (say X = differential geometry). Unless you are deeply involved in practicing that subject, it’s going to be extremely difficult to build good tools. It’ll be much like trying to build new tools for carpentry without actually doing any carpentry yourself. This is perhaps part of why tools like Mathematica work quite well – the principal designer, Stephen Wolfram, has genuine research interests in mathematics and physics. Of course, not all parts of Mathematica work equally well; some parts feel like toys, and it seems likely those are the ones not being used seriously internal to the company.
具体来说:假设你想为科目X(比如说X=微分几何)构建工具。除非你对该学科有深入的实践,否则要想打造出好的工具是非常困难的。这将很像试图为木工制作新的工具,而不真正自己动手做任何木工活。这也许是Mathematica这样的工具相当好用的部分原因--主要设计者Stephen Wolfram对数学和物理学有真正的研究兴趣。当然,并不是所有的Mathematica的所有部分都能发挥出同样的效果;有些部分感觉就像玩具一样,看来这些部分很可能是公司内部*不认真使用的部分。
There’s a general principle here: good tools for thought arise mostly as a byproduct of doing original work on serious problems. They tend either be created by the people doing that work, or by people working very closely to them, people who are genuinely bought in A related argument has been made in Eric von Hippel’s book “Democratizing Innovation” (2005), which identifies many instances where what appears to be commercial product development is based in large or considerable part on innovations from users.. Furthermore, the problems themselves are typically of intense personal interest to the problem-solvers. They’re not working on the problem for a paycheck; they’re working on it because they desperately want to know the answer.
这里有一个总的原则。好的思想工具大多是对严重问题进行原创性工作的副产品。在Eric von Hippel的《创新的民主化》(2005年)一书中提出了相关的论点,其中指出了许多看似商业化的产品开发在很大程度上或相当大的程度上是基于用户的创新。此外,问题本身通常是问题解决者个人强烈的兴趣。他们不是为了薪水而研究这个问题,而是因为他们迫切地想知道答案。
Many people have asked why we wrote our first mnemonic essay about quantum computing. If we’d chosen an easier subject we could have attracted a much larger audience. But we also wanted the essay to be authentic, to be about problems we wanted to solve. One of us (MN) has done a lot of original research work on quantum computing. The essay reflects that thinking. Indeed, the framing of the essay is about answering a question MN personally wanted to answer: if humans ever discovered aliens, would they have computers, and if so, what types of computer would they have? This perhaps sounds like a contrived question, but it’s quite serious, and turns out to be a deep question with a nontrivial answer: writing the essay helped MN substantially improve his understanding of the question.
很多人问我们为什么要写第一篇关于量子计算的蒙太奇文章。如果我们选择了一个更容易的主题,我们可以吸引更多的读者。但我们也希望这篇文章是真实的,是关于我们想解决的问题。我们中的一个人(MN)在量子计算方面做了很多原创性的研究工作。这篇征文反映了这种思考。事实上,这篇文章的框架是要回答MN个人想回答的一个问题:如果人类发现了外星人,他们会不会有电脑,如果有,他们会有什么类型的电脑?这也许听起来像是一个被设计好的问题,但其实很严肃,事实证明这是一个很深奥的问题,而且答案并不复杂:写这篇作文帮助MN大幅提高了他对这个问题的理解。
That said, answering that question wasn’t the principal point of creating the essay: making the mnemonic medium was. And for future work on tools for thought, it’d be valuable to push much harder on questions we’d genuinely like to answer ourselves. That’s a way of keeping yourself honest, ensuring you’re not just building a flashy toy, but something genuinely useful for solving real problems that are of independent interest.
话虽如此,但回答这个问题并不是创作这篇散文的主要意义:做思维载体才是。而对于今后的思想工具的工作,我们在真正想自己回答的问题上多推敲一些,是很有价值的。这也是让自己保持诚实的一种方式,确保自己不只是在打造一个浮华的玩具,而是真正有用的东西,来解决独立感兴趣的实际问题。
In serious mediums, there’s a notion of canonical media. By this, we mean instances of the medium that expand its range, and set a new standard widely known amongst creators in that medium. For instance, Citizen Kane, The Godfather, and 2001 all expanded the range of film, and inspired later film makers. It’s also true in new media. YouTubers like Grant Sanderson have created canonical videos: they expand the range of what people think is possible in the video form. And something like the Feynman Lectures on Physics does it for textbooks. In each case one gets the sense of people deeply committed to what they’re doing. In many of his lectures it’s obvious that Feynman isn’t just educating: he’s reporting the results of a lifelong personal obsession with understanding how the world works. It’s thrilling, and it expands the form.
在严肃的媒体中,有一个概念是 "经典媒体"。我们的意思是说,我们指的是那些扩大了媒体的范围,并在创作者中建立了一个新的标准。比如说,《公民凯恩》、《教父》、《2001年》等都扩大了电影的范围,启发了后来的电影制作人。在新媒体领域也是如此。像格兰特-桑德森(Grant Sanderson)这样的YouTubers们创造了经典的视频:他们扩大了人们对视频形式的想象范围。而像《费曼物理学讲座》这样的东西,也是为教科书所做的。在每一种情况下,人们都能感受到人们对自己所做的事情的执着。在他的许多讲座中,很明显,费曼不仅仅是在教育:他报告的是他一生对理解世界如何运作的个人执着的结果。这让人惊心动魄,也拓展了形式。
We’ve been disappointed by how unambitious people are in this sense with Jupyter notebooks. They haven’t pushed the medium all that hard; there is no Citizen Kane of Jupyter notebooks. Indeed, we’re barely beyond the Lumière brothers. Examples like Norvig’s notebook are fine work, but seem disappointing when evaluated as leading examples of the medium.
在这个意义上,我们对人们对Jupyter笔记本是多么的心无旁骛,感到失望。他们并没有把这个媒介推得那么厉害;Jupyter笔记本中没有的凯恩。事实上,我们勉强超越了卢米埃兄弟。像诺维格的笔记本这样的例子是很好的作品,但作为媒介的领先例子来评价,似乎令人失望。
Aspiring to canonicity, one fun project would be to take the most recent IPCC climate assessment report (perhaps starting with a small part), and develop a version which is executable. Instead of a report full of assertions and references, you’d have a live climate model – actually, many interrelated models – for people to explore. If it was good enough, people would teach classes from it; if it was really superb, not only would they teach classes from it, it could perhaps become the creative working environment for many climate scientists.
为了实现无菌性,一个有趣的项目是采用最新的气专委气候评估报告(也许从一小部分开始),并开发一个可执行的版本。与其说是一份充满断言和参考资料的报告,不如说是一份活生生的气候模型--实际上是许多相互关联的模型--供人们探索。如果它足够好,人们就会用它来上课;如果它真的很好,人们不仅会用它来上课,也许它可以成为许多气候科学家的创造性工作环境。
One promising exploration in this direction is The Structure and Interpretation of Classical Mechanics, a beautiful executable book building up classical mechanics. Many theorems of classical mechanics aren’t just expressed in static form, on the page, but live, as code which can be modified by the user. Theorems become APIs, which can literally be applied to other objects, and chained together. It uses a much more powerful underlying model than Jupyter, developing a new symbolic language as part of the book. It has many flaws – among them, the book doesn’t run live in the browser, making it difficult for users to experiment. And while the book is well written, the authors do not understand classical mechanics as deeply as the authors of some other books. But it’s nonetheless an inspiring evocation of what is possible. And it hints at what is possible when authors use executable books for a serious purpose, and aspire toward canonical media.
这方面的一个有前途的探索是*[古典力学的结构与解释*,这是一本构建古典力学的漂亮的可执行书。古典力学的许多定理不只是以静态的形式在页面上表达,而是活生生的、可以被用户修改的代码。定理变成了API,可以字面上应用到其他对象,并将其串联起来。它使用了比Jupyter更强大的底层模型,作为本书的一部分,开发了一种新的符号语言。但它也有很多缺陷--其中,这本书并没有在浏览器中实时运行,这让用户很难进行实验。而且,虽然这本书写得很好,但作者对古典力学的理解并不像其他一些书的作者那样深刻。但尽管如此,这本书还是让人联想到了可能的东西。而且,它暗示了当作者把可执行的书籍用在一个严肃的目的上,并向往经典的媒体时,会有什么可能。
Consider an author writing a popular book about quantum mechanics. Such an author is in a strong position: they can begin their book with astonishing phenomena such as black hole evaporation, quantum teleportation, and the role of quantum fluctuations in the early universe. Or, if they wish, they can start with some of the deepest mysteries known to humanity: the relationship between quantum mechanics and gravity, or the quantum measurement problem. There is no shortage of extraordinary phenomena and beautiful mysteries. These are the kind of things which touch a chord inside many, perhaps most people. And so it’s relatively easy to draw readers in, to get them engaged, and keep them connected.
考虑一个作家写一本关于量子力学的通俗书。这样的作者处于一个强大的地位:他们可以在书的开头就讲一些惊人的现象,比如黑洞蒸发、量子传送,以及量子波动在早期宇宙中的作用。或者,如果他们愿意,他们可以从人类已知的一些最深奥的谜团开始:量子力学与万有引力的关系,或者量子测量问题。这里不乏非凡的现象和美丽的奥秘。这些都是能够触动许多人,也许是大多数人内心深处的一根弦的东西。所以,要吸引读者,让他们参与进来,让他们保持联系,相对来说是很容易的。
By contrast, consider a typical technical book about quantum mechanics. It’s very unlikely to start with black hole evaporation or quantum teleportation – and if it does, such a discussion will be perfunctory. Instead, it will start out drily, with technical minutiae. Complex numbers. Wavefunctions. Many different types of differential equations, and how to solve them. Hermitian and unitary operators. And so on, piece by piece slowly building up all the machinery needed to solve quantum mechanical problems. It may be tens or even hundreds of pages before the book begins to connect to the exciting problems which form the bread-and-butter of popular accounts.
相比之下,考虑一下关于量子力学的典型技术书籍。这本书不太可能从黑洞蒸发或量子传送开始--如果是这样的话,这样的讨论就会敷衍了事。相反,它将以技术性的细节开始,以技术性的细节开始。复杂的数字。波函数。许多不同类型的微分方程,以及如何解决它们。Hermitian和单项运算符。以此类推,一块一块地慢慢建立起解决量子力学问题所需的所有机器。可能要花上几十页甚至几百页的篇幅,才会开始联系到那些令人振奋的问题,这些问题构成了大众化的知识体系。
People with little experience doing good technical writing often complain about this dry, bottom-up approach. They will complain that writers should instead stay closer to the fun material, and use less technical notation and nomenclature. But when competent writers attempt to follow this prescription, invariably it works poorly.
没有什么经验的人在写好技术文的时候,经常会抱怨这种干巴巴的、自下而上的方法。他们会抱怨说,写作者应该更贴近有趣的材料,少用技术性的符号和术语。但是,当有能力的写手们试图遵循这个处方时,总是效果不佳。
One problem is that a person can spend years reading analogies about black hole evaporation, quantum teleportation, and so on. And at the end of all that reading they typically have… not much genuine understanding to show for it. The analogies and heuristic reasoning simply don’t go far. They may be entertaining and produce some feeling of understanding. But the reasoning won’t scale out; it can’t be applied to other phenomena, at least not without lots of caveats, caveats the reader is in no position to understand or apply. As a result, good technical writers instead mostly build things up from first principles, with occasional digressions to the broader motivating picture. And that means starting with a lot of detailed, technical minutiae.
有一个问题是,一个人可以花上好几年的时间去读关于黑洞蒸发、量子传送等等的类比。而在所有的阅读结束后,他们通常...... 没有什么真正的理解。这些类比和启发式推理根本走不远。它们可能很有趣,也能让人产生一些理解的感觉。但是,这些推理是无法推广的;它无法应用于其他现象,至少在没有大量的注意事项的情况下,读者无法理解或应用这些注意事项。因此,优秀的技术作家们大多从最初的原则出发,偶尔也会从更广泛的动因入手,把事情建立起来。这就意味着要从很多详细的技术细节入手。
It’s striking to contrast conventional technical books with the possibilities enabled by executable books. You can imagine starting an executable book with, say, quantum teleportation, right on the first page. You’d provide an interface – perhaps a library is imported – that would let users teleport quantum systems immediately. They could experiment with different parts of the quantum teleportation protocol, illustrating immediately the most striking ideas about it. The user wouldn’t necessarily understand all that was going on. But they’d begin to internalize an accurate picture of the meaning of teleportation. And over time, at leisure, the author could unpack some of what might a priori seem to be the drier details. Except by that point the reader will be bought into those details, and they won’t be so dry
将传统的技术书籍与可执行的书籍所提供的可能性进行对比,是非常引人注目的。你可以想象一下,在可执行的书的第一页就开始介绍量子传送,比如说,量子传送。你会提供一个接口--也许是导入一个库--让用户可以立即进行量子系统的远程传输。他们可以实验量子传送协议的不同部分,立即说明关于它最引人注目的想法。用户不一定能理解所有的事情。但他们会开始内化出一个准确的画面 But they'd begin to internalize an accurate picture of teleportation of the meaning of teleportation. 而随着时间的推移,在闲暇之余,作者可以解开一些先验的细节。但到了那个时候,读者就会被这些细节买通了,就不会那么干瘪了
In other words, you could begin an executable book with material the users already care about, can connect to easily, and find motivating. For instance, you could begin by exploring teleportation or the Big Bang. But such an opening won’t suffer the drawback of popular science, of being vague and imprecise. Rather, the interface would be completely well specified. And, with some care, the interface could be scaled out, applied in ever-expanding contexts. The understanding would be transferable. Even a user who has understood only a tiny part of the material could begin tinkering, building up an understanding based on play and exploration. It’s common to dismiss such an approach as leading to a toy understanding; we believe, on the contrary, that with well enough designed scaffolding it can lead to a deep understandingThe masters of this are video game designers. See, for example, Dan Cook, Building a Princess Saving App (2008), and Jonathan Blow and Marc ten Bosch, Designing to Reveal the Nature of the Universe (2011). . Developed in enough depth, such an environment may even be used to explore novel research ideas. To our knowledge this kind of project has never been seriously pursued. But it’d be fun to try.
换句话说,你可以用用户已经关心的、可以很容易联系到的、并且觉得很有动力的材料开始编写一本可执行的书。例如,你可以从探索传送术或宇宙大爆炸开始。但这样的开篇不会有科普的缺点,即模糊和不精确。相反,界面会被完全规定得很好。而且,只要稍加注意,这个接口可以被放大,应用在不断扩大的环境中。这种理解是可以转移的。即使是一个只理解了一小部分材料的用户,也可以开始修补,在游戏和探索的基础上建立起一种理解。人们普遍认为这样的方法会导致对玩具的理解;相反,我们认为,只要设计得足够好的脚手架,就可以导致对知识的深入理解。例如,参见Dan Cook,Building a Princess Saving App(2008),以及Jonathan Blow和Marc ten Bosch,Designing to Reveal the Nature of the Universe(2011)。如果开发得足够深入,这样的环境甚至可以用来探索新的研究思路。据我们所知,这样的项目还没有被认真地进行过。但是,这将是一个有趣的尝试。
We’ve covered a lot, and it’s helpful to distill the main takeaways – general principles, questions, beliefs, and aspirations. Let’s begin with memory systems, particularly the mnemonic medium:
我们已经涵盖了很多内容,提炼出主要的外延--一般的原则、问题、信念和愿望,是很有帮助的。让我们从记忆系统,特别是记忆介质开始说起。
- Memory systems make memory into a choice, rather than an event left up to chance: This changes the relationship to what we’re learning, reduces worry, and frees up attention to focus on other kinds of learning, including conceptual, problem-solving, and creative.
- 记忆系统使记忆成为一种选择,而不是偶然的事件这改变了我们与所学内容的关系,减少了忧虑,并将注意力集中在其他类型的学习上,包括概念性、问题解决和创造性的学习上。
- Memory systems are in their infancy: it is possible to increase effective human memory by an order of magnitude, even beyond what existing memory systems do; and systems such as the mnemonic medium may help expand the range of subjects users can comprehend at all.
- 记忆系统还处于初级阶段:有可能将人类的有效记忆力提高一个数量级,甚至超过现有的记忆系统所能做到的程度;而像记忆介质这样的系统,可能有助于扩大用户能够理解的对象范围。
- What would a virtuoso use of the mnemonic medium look like? There’s some sense in which the mnemonic medium is “just” flash cards. The right conclusion isn’t that it’s therefore trivial; it’s that flash cards are greatly underrated. In writing Quantum Country we treated the writing of the cards with reverence; ideally, authors would take card writing as seriously as Nabokov took sentence writing. Of course, we didn’t reach that level, but the aspiration expands the reach of the medium. What would virtuoso or even canonical uses of the mnemonic medium look like?
- 记忆介质的使用会是什么样子的?记忆介质 "只是 "闪念卡 "的 "只是 "闪念卡的 "只是 "有一定的意义。正确的结论并不是说它因此微不足道,而是闪卡被大大低估了。在写《量子国》时,我们以敬畏的态度对待闪卡的写作;在理想的情况下,作家们会像纳博科夫对待句子写作一样认真对待闪卡的写作。当然,我们没有达到这个水平,但这个愿望扩大了媒介的范围。符号学媒介的大师级甚至经典级的使用会是什么样子呢?
- Memory systems can be used to build genuine conceptual understanding, not just learn facts: In Quantum Country we achieve this in part through the aspiration to virtuoso card writing, and in part through a narrative embedding of spaced repetition that gradually builds context and understanding.
- 记忆系统可以用来建立真正的概念性理解,而不仅仅是学习事实:在量子国中,我们部分地通过对卡片书写的渴望,部分地通过间隔重复的叙事嵌入,逐步建立语境和理解。
- Mnemonic techniques such as memory palaces are great, but not versatile enough to build genuine conceptual understanding: Such techniques are very specialized, and emphasize artificial connections, not the inherent connections present in much conceptual knowledge. The mnemonic techniques are, however, useful for bootstrapping knowledge with an ad hoc structure.
- 记忆宫等记忆技术很好,但不够通用,不足以建立真正的概念理解:这种技术非常专业,强调人为的联系,而不是许多概念性知识中的内在联系。然而,记忆宫技术对于用的结构引导知识是有用的。
- Memory is far more important than people tend to think: It plays a role in nearly every part of cognition, including problem-solving, creative work, and meta-cognition. The flip side is that memory systems themselves want to grow into other types of tools – tools for reading, tools for problem-solving, tools for creating, tools for attention management. That said, we don’t yet know what memory systems want to be. To reiterate: memory systems are in their infancy.
- 记忆力的重要性远比人们倾向于认为的要大得多:记忆力在认知的几乎每一个部分都起着作用,包括解决问题、创造性工作和元认知。反过来说,记忆系统本身也希望成长为其他类型的工具--阅读的工具、解决问题的工具、创造的工具、注意力管理的工具。话虽如此,但我们还不知道记忆系统想要成为什么样的工具。重申一下:记忆系统还处于初级阶段。
The mnemonic medium is merely one prototype tool for thought. We also discussed several other ideas, including mnemonic video and executable books. Here are some key takeaways:
记忆媒介仅仅是思想的一个原型工具。我们还讨论了其他几个想法,包括记忆视频和可执行的书籍。以下是一些关键的启示。
- What practices would lead to tools for thought as transformative as Hindu-Arabic numerals? And in what ways does modern design practice and tech industry product practice fall short? To be successful, you need an insight-through-making loop to be operating at full throttle, combining the best of deep research culture with the best of Silicon Valley product culture.
- 什么做法会导致思维工具像印度阿拉伯数字那样具有变革性? 以及现代设计实践和高科技行业产品实践在哪些方面不尽人意?要获得成功,您需要一个“通过洞察力形成的循环”才能充分发挥作用,将深厚的研究文化与最好的研究相结合 硅谷的产品文化。
- Tools for thought are (mostly) public goods, and as a result are undersupplied: That said, there are closely-related models of production which have succeeded (the games industry, Adobe, AutoDesk, Pixar). These models should be studied, emulated where possible, and used as inspiration to find more such models.
- 思想工具是(大部分)公共产品,因此供不应求:也就是说,有一些密切相关的生产模式已经成功了(游戏行业、Adobe、AutoDesk、Pixar)。这些模式应该研究,尽可能地模仿,并以此为灵感,寻找更多这样的模式。
- Take emotion seriously: Historically, work on tools for thought has focused principally on cognition; much of the work has been stuck in Spock-space. But it should take emotion as seriously as the best musicians, movie directors, and video game designers. Mnemonic video is a promising vehicle for such explorations, possibly combining both deep emotional connection with the detailed intellectual mastery the mnemonic medium aspires toward.
- 认真对待情感:历史上,关于思想工具的工作主要集中在认知上,很多工作都停留在Spock空间。但它应该像最好的音乐家、电影导演和电子游戏设计师一样认真对待情感。Mnemonic视频是一个很有希望的探索载体,它可能将深层的情感联系与Mnemonic媒介所向往的细致的知识性掌握相结合。
- Tools for thought must be developed in tandem with deep, original creative work: Much work on tools for thought focuses on toy problems and toy environments. This is useful when prototyping, but to be successful such tools must ultimately be used to do serious, original creative work. That’s a baseline litmus test for whether the tools are genuinely working, or merely telling a good story. Ideally, for any such tool there will be a stream of canonical media expanding the form, and entering the consciousness of other creators.
- 思维工具的开发必须与深入的、原创性的创造性工作同时进行:思维工具的许多工作都集中在玩具问题和玩具环境上。这在原型设计时是有用的,但要想成功,这些工具必须最终被用来做严肃的、原创的创造性工作。这是检验工具是否真正发挥作用,或者仅仅是在讲一个好的故事的基准试金石。理想的情况是,对于任何这样的工具,都会有一个流传下来的典范媒体扩大形式,进入其他创作者的意识。
Let’s return to the question that began the essay: how to build transformative tools for thought? Of course, we haven’t even precisely defined what such transformative tools are! But they’re the kind of tools where relatively low cost changes in practice produce transformative changes in outcome – non-linear returns and qualitative shifts in thinking. This is in contrast with the usual situation, where a small change in practice causes a small change in results.
让我们回到文章开头的问题:如何构建思想的转化工具?当然,我们甚至还没有准确地定义这种转化性工具是什么! 但它们就是那种通过相对低成本的实践改变,产生转化性结果的工具--非线性回报和思维的质变。这与通常的情况形成了鲜明的对比,即实践中的一个小的改变就会引起结果的小变化。
Historically, humans have invented many such transformative tools for thought. Writing and music are ancient examples; in modern times, tools such as Photoshop and AutoCAD qualify. Although it’s very early days, we believe the mnemonic medium shows much promise. It needs to be developed much further, along the lines we’ve described, and likely requires additional powerful ideas. But we believe it’s possible for humanity to have a widespread memory practice that radically changes the way we think.
在历史上,人类发明了许多这样的改造思想的工具。写作和音乐是古代的例子;在现代,像Photoshop和AutoCAD这样的工具也符合条件。虽然现在还很早期,但我们相信记忆力的媒介显示出了很大的希望。它需要按照我们所描述的思路进一步发展,并且可能需要更多的强大想法。但我们相信,人类有可能拥有一种广泛的记忆实践,从根本上改变我们的思维方式。
More broadly, we hope the principles in this essay will help support the creation of more transformative tools for thought. Historically, most invention of tools for thought has been done bespoke, by inspired individuals and groups. But we believe that in the future there will be an established community that routinely does this kind of invention.
更广泛地说,我们希望这篇文章中的原则能够帮助支持创造出更多具有变革性的思想工具。从历史上看,大多数思想工具的发明都是由有灵感的个人和团体定制的。但我们相信,未来会有一个成熟的群体,常规性地做这种发明。
Acknowledgments
This essay is based on conversations with many people. Particular thanks to David Albert, Shan Carter, May-Li Khoe, Robert Ochshorn, Grant Sanderson, Caitlin Sikora, and Bret Victor. Thanks also to Nicky Case for feedback on a draft of the essay. This work was supported by our Patreons. AM is supported in part by a grant from Emergent Ventures. MN’s work was supported by YC Research.
For attribution in academic contexts, please cite this work as:
Andy Matuschak and Michael Nielsen, “How can we develop transformative tools for thought?”, https://numinous.productions/ttft, San Francisco (2019).
Authors are listed alphabetically.
This work is licensed under a Creative Commons Attribution 4.0 International License. This means you’re free to copy, share, and build on the work, provided you attribute it appropriately. Please click on the following license link for details:
Part of the origin myth of modern computing is the story of a golden age in the 1960s and 1970s. In this story, visionary pioneers pursued a dream in which computers enabled powerful tools for thought, that is, tools to augment human intelligence. One of those pioneers, Alan Kay, summed up the optimism of this dream when he wrote of the potential of the personal computer: “the very use of it would actually change the thought patterns of an entire civilization”.